Preliminary Site Investigation Report

Planning Proposal to amend the Byron Local Environmental Plan (BLEP) 2014 to formalise the use of the dwelling & detached dual occupancy dwelling Lot 5 DP585928 No 55 Settlement Road Main Arm

HEALTH SCIENCE ENVIROMENTAL EDUCATION ENVIRONMENTAL AUDITOR

Preliminary Site Investigation Report

Planning Proposal to amend the Byron Local Environmental Plan (BLEP) 2014 to formalise the use of the dwelling & detached dual occupancy dwelling Lot 5 DP585928 No 55 Settlement Road Main Arm

Prepared for: Glenn Wright Version: Revised Final Date: 29 May 2024 Job No. 55/2020_psi V2.0 Tim Fitzroy & Associates ABN: 94120188829 ACN: 120188829

This document was prepared in accordance with the scope of services described in this report, for the sole use of Glenn Wright, his agents, and the relevant regulatory authorities. This document should not be used or copied by other parties without written authorisation from *Tim Fitzroy & Associates (TFA)*.

Tim Fitzroy Director 29 May 2024

environmental

🚽 Tim Fitzroy

Environmental Health Scientist Environmental Educator Environmental Auditor

> 61 Pine Avenue East Ballina NSW 2478 T | 02 6686 5183 M | 0448 483 837 tim@timfitzroy.com.au www.timfitzroy.com.au

TABLE OF CONTENTS

Section

Page

1.	INTRODUCTION	1
1.1 1.2 1.3 1.4 1.5	Background Objectives Summary Scope of Works General limitations to environmental information	1 2 3
2.	SITE IDENTIFICATION AND SURROUNDS	5
2.1 2.2 2.3 2.4 2.5	Site Description Zoning Surrounding Landuse Surrounding Environment Current Use	5 5 5
3.	ENVIRONMENTAL SETTING	7
3.1 3.2 3.3 3.4 3.5	Local Meteorology Topography and Hydrology Geology and Soils Acid Sulfate Soils Hydrogeology	7 7 8
4.	SITE HISTORY	10
5.	SAMPLING & QUALITY ASSURANCE PLAN	16
5.1 5.2 5.3 5.4	Overview of DQO Process Possible Contaminant Sources Relevant Environmental media Relevant Environmental Criteria	19 20
6.	SITE ASSESSMENT	21
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Preliminary Site Investigations Visible Signs of Contamination Odours Flood Potential Presence of Drums, Wastes and Fill Material Methodology. Data Usability Conditions Encountered	21 21 21 21 21 23
7.	ANALYTICAL RESULTS	24

7.1	Soil	24
8.	DISCUSSION AND CONCEPTUAL SITE PLAN	25
8.1	Discussion	25
8.2	Conceptual Site Model	25
9. C	ONCLUSIONS	26

Tables

Table 3.1	Climate Summary Ballina Airport Weather Station	7
Table 3.2	Registered Groundwater Drillers Logs in the Locale	9
Table 4.1	Review of Historical Aerial Photographs 1	0
Table 5.1	DQOs Planning Process Output – Estimation Process 1	6
Table 5.2	Potential Contaminants of Concern for Identified Activities 2	20
Table 7.1	Summary Results Laboratory Analysis of Soil for Metals, OCs	
& OPs	24	
Table 8.1	CSM Discussion	25

Appendices

Figu	ures	29
	Lotsearch	
	Site Photos	
	Chain of Custody	
	Laboratory Analysis	
	Data Usability Assessment and Quality Assurance	
	Gateway Determination 18/02/24	

1. Introduction

In response to the Gateway Determination dated 18th January 2024 (see **Appendix F**), Tim Fitzroy & Associates (TFA) have been engaged to include the assessment of the detached dual occupancy dwelling to the *Preliminary Site Investigation* prepared by this office dated 15 July 2022.

This report provides the results of the *Preliminary Site Investigation* with respect to an revised Planning Proposal to Byron Shire Council (BSC) to amend the Byron Local Environmental Plan (BLEP) 2014 to formalise the use of the dwelling and the detached dual occupancy dwelling located at Lot 5 DP585928, No 55 Settlement Road Main Arm.

This report should be read in conjunction with TFA's General limitations to environmental information in Section 1.5.

1.1 Background

The planning proposal comprises:

• An application to BSC to amend the Byron Local Environmental Plan (BLEP) 2014 to formalise the use of the existing dwelling and detached dual occupancy dwelling located at Lot 5 DP585928, No 55 Settlement Road, Main Arm.

1.2 Objectives

This report has been prepared to accompany a Planning Proposal to BSC to specifically address potential contamination issues from past and current uses on No 55 Settlement Road, Main Arm (Lot 5 DP585928).

Chapter 4 Remediation of Land (SEPP Resilience and Hazards 2021) relates to contaminated land issues. Clause 4.6 of SEPP Resilience and Hazards 2021 sets out the obligations a planning authority must consider when granting a development application. Clause 4.6 relevantly provides:

4.6 Contamination and remediation to be considered in determining development application

(1) A consent authority must not consent to the carrying out of any development on land unless—

(a) it has considered whether the land is contaminated, and

(b) if the land is contaminated, it is satisfied that the land is suitable in its contaminated state (or will be suitable, after remediation) for the purpose for which the development is proposed to be carried out, and

(c) if the land requires remediation to be made suitable for the purpose for which the development is proposed to be carried out, it is satisfied that the land will be remediated before the land is used for that purpose.

(2) Before determining an application for consent to carry out development that would involve a change of use on any of the land specified in subsection (4), the consent authority must consider a report specifying the findings of a preliminary investigation of the land concerned carried out in accordance with the contaminated land planning guidelines.

(3) The applicant for development consent must carry out the investigation required by subsection (2) and must provide a report on it to the consent authority. The consent authority may require the applicant to carry out, and provide a report on, a detailed investigation (as referred to in the contaminated land planning guidelines) if it considers that the findings of the preliminary investigation warrant such an investigation.

(4) The land concerned is-

(a) land that is within an investigation area,

(b) land on which development for a purpose referred to in Table 1 to the contaminated land planning guidelines is being, or is known to have been, carried out, (c) to the extent to which it is proposed to carry out development on it for residential, educational, recreational or child care purposes, or for the purposes of a hospitalland-

(i) in relation to which there is no knowledge (or incomplete knowledge) as to whether development for a purpose referred to in Table 1 to the contaminated land planning guidelines has been carried out, and

(ii) on which it would have been lawful to carry out such development during any period in respect of which there is no knowledge (or incomplete knowledge).

As the land has been used for agricultural activities (banana plantation and passionfruit production) therefore clause 4.6 applies. This report has been prepared to satisfy Council that the site is suitable for the use proposed in the planning proposal. This report should be read in conjunction with TFA's General limitations to environmental information in Section 1.5.

1.3 Summary

The subject site covers an area of about 23.85ha approximately 1.8km south of the Main Arm village. The site is accessed via Settlement Road. Site improvements include a three bedroom dwelling, a 1 bedroom dual occupancy dwelling, a dam and fencing.

The site is an irregular shape and is located on the southern side of Settlement Road. The site is undulating ranging from 130m AHD in the south to 40m AHD in the north interspersed with a series of gullies. The vast bulk of site (estimated at over 80%) is covered with vegetation. A portion of the central and north western portion of the site has been partially cleared whereupon the dwelling, shed and dam are located.

A search of the NSW Department of Primary Industry (DPI) Cattle Dip Site Locator tool (https://www.dpi.nsw.gov.au/animals-and-livestock/beef-cattle/health-anddisease/parasitic-andprotozoal- diseases/ticks/cattle-dip-site-locator) indicated that the former Durrumbil cattle dip site has been decommissioned and is located on the northern side of Settlement Road, approximately 173m north west of the existing dwelling on the subject site and therefore within the 200m radius NSW EPA investigation zone.

This investigation is Tier 1 - preliminary site investigation, which is required to determine if contamination of the site's soil has occurred from past land usage in accordance with NEPM 1999 (2013), DUAP and EPA (1998). The investigation includes obtaining a history of land usage on the site which confirmed the previous use of the site for banana and passionfruit production and proximity of the former Durrumbil cattle dipsite and therefore a preliminary soil-sampling regime was undertaken. The results of the soil analysis are compared with the Health Investigation Levels (HILA) and Ecological Investigation Levels (EILs) outlined in NEPM 1999 (2013).

A total of sixteen boreholes (TFA1-TFA16 plus 2 QA samples) within proximity of the existing dwelling and detached dual occupancy dwelling were analysed for 16 metals (silver, arsenic, lead, cadmium, chromium, copper, manganese, nickel, selenium, zinc, mercury, iron, aluminium, beryllium, boron and cobalt), organochlorine pesticides (OCPs) and organophosphorus pesticides (OP's).

All of the soil samples show contaminant levels well below the most stringent Australian and New Zealand Environment and Conservation Council (ANZECC), National Environment Protection Measure (NEPM 2013) HILA Residential with garden/accessible soil and Ecological Soil Investigation Levels (NEPM 2013).

Based on the outcomes of this PSI there is no impediment to approval of the Planning Proposal to amend the Byron Local Environmental Plan (BLEP) 2014 to formalise the use of the existing dwelling and detached dual occupancy dwelling located at Lot 5 DP585928, No 55 Settlement Road, Main Arm.

1.4 Scope of Works

The objective of this preliminary investigation has been to determine if land contamination has occurred from historical and current land use activities occurring on site or immediately nearby. To determine if the site poses a significant risk of harm to end users (and nearby sensitive receptors), available historical information has been reviewed and a number of soil and groundwater samples have been collected and analysed for a range of contaminants typically associated with the land uses identified as having occurred on site including metals, hydrocarbons, asbestos and BTEXN.

The results of the soil analysis are compared to relevant National Environmental Protection Measure (NEPM 1999 updated 2013) guidelines in order to assess the significance of risk. This investigation is considered to be Stage 1 of the Managing Land Contamination Planning Guidelines (DUAP and EPA, 1998) or a Preliminary Site Investigation (PSI; NEPM 1999). If contamination levels exceed the adopted EPA acceptable levels, a detailed investigation is then required (i.e., a Stage 2 investigation or Detailed Site Investigation (DSI). If the contamination levels are below the relevant acceptable levels, and information gathered as part of the investigation also supports that contamination was unlikely to have occurred; only a Stage 1 (or PSI) investigation would be required.

This preliminary investigation has been used to identify the following:

- Past and present potentially contaminating activities occurring on or near the site; and
- The presence of Potential Contaminants of Concern associated with the identified land uses.

The investigation will also:

- Discuss the site condition;
- Provide a preliminary assessment of the site's contamination status; and
- Assess the need for further investigations.

Relevant documents considered in the preparation of this investigation included:

• ANZECC and NHMRC (1992) Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites;

- Council of Standards Australia (2005) AS 4482.1-2005 Guide to the sampling and investigation of potentially contaminated soil - Non-volatile and semivolatile compounds;
- NSW DEC (2006) Contaminated Sites Guidelines for the NSW Site Auditor • Scheme 2nd Edition:
- NSW EPA (1995) Contaminated Sites Sampling Design Guidelines;
- NSW EPA (2011) Guidelines for Consultants Reporting Contaminated Sites; • and
- National Environment Protection Council (NEPC) (2013) National Environment Protection (Assessment of Site Contamination) Measure

This preliminary assessment report is written in accordance with the new Contaminated land guidelines (NSW Environment Protection Authority 2020) and the Northern Rivers Regional Councils (NRRC) Regional Policy for the Management of Contaminated Land (NRRC 2006).

General limitations to environmental information 1.5

TFA has conducted the services in a manner consistent with the appropriate levels of care and rigour expected of members of the environmental assessment profession. No warranties or guarantees, expressed or implied, are made.

The findings of this report are strictly limited to identifying the environmental conditions associated with the subject property in regard to site contamination, and does not seek to provide an opinion regarding other aspects of the environment not related to site contamination, or to the suitability of the site in regard to: landuse planning and legal use of the land; and/or regulatory responsibilities or obligations (for which a legal opinion should be sought); and/or the occupational health and safety legislation; and/or the suitability of any engineering design. Reviews of such information are only in relation to the contaminated land aspects of any project or site. If specialist technical review of such documents is required, these should be obtained by an appropriate specialist.

The reporting and conclusions are based on the information obtained at the time of the assessments. Changes to the subsurface conditions may occur subsequent to the investigation described, through natural processes or through the intentional or accidental addition of contaminants, and these conditions may change with space and time.

Furthermore, the test methods used to characterise the contamination at each sampling location are subject to limitations and provide only an approximation of the contaminant concentrations. Monitoring and chemical analytes are based on the information detailed in the site history. Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history and which may not be expected at the site.

The absence of any identified hazardous or toxic materials at the site should not be interpreted as a warranty or guarantee that such materials do not exist at the site. Therefore, future work at the site which involves subsurface excavation or removal of structures or parts thereof, should be conducted based on appropriate management plans. These should include, inter alia, environmental management plans, including unexpected findings protocols, hazardous building materials management plans, and occupational health and safety plans.

2.1 Site Description

The subject site covers an area of about 23.85ha approximately 1.8km south of the Main Arm village. The site is accessed via Settlement Road. Site improvements include a three bedroom dwelling, a one bedroom detached dual occupancy dwelling a shed, a dam and fencing.

The site is an irregular shape and is located on the southern side of Settlement Road. The site is undulating ranging from 130m AHD in the south to 40m AHD in the north interspersed with a series of gullies. The vast bulk of site (estimated at over 80%) is covered with vegetation. A portion of the central and north western portion of the site has been partially cleared whereupon the dwelling, shed and dam are located.

A site locality diagram that shows the subject site is provided in Figure 1.

2.2 Zoning

Under the Byron Local Environmental Plan (BLEP 2014) (see Appendix A) The subject site is zoned:

- RU2 Rural Landscape; •
- E2 Environmental Conservation; and •
- DM Deferred Matter.

2.3 Surrounding Landuse

North	Rural residence and vegetation
South	Vegetation
West	Rural residence and vegetation
East	Banana Plantation and rural property

2.4 Surrounding Environment

The Brunswick River is situated about 450m to the east of the site. Three gullies drain from the subject site to the Brunswick River which is located to the east of Main Arm Road. The Brunswick River releases to the Coral Sea, South Pacific Ocean approximately 17km to the east of the site.

The marine river environment of the Brunswick River is considered to be a sensitive ecological receptor. The terrestrial and aquatic ecosystems and associated dependent species would be potential environmental receptors. Sensitive receptors also include humans, where primary contact (e.g., swimming) and secondary contact (e.g., boating) recreational uses would be potential human receptors of the river.

2.5 Current Use

The subject site is currently used for residential use and cattle agistment in the north western portion. The remainder of the site is a mix of native and exotic vegetation.

3.1 Local Meteorology

A summary of the climatic data from the Ballina Airport AWS (located approximately 47.5 km from the site) is shown in Table 3.1.

	Temper	ature ⁰ C	Rainfall mm		
	Minimum	Maximum	Average monthly	Mean number of raindays	
January	21.3	28.0	153.4	14.6	
February	21.1	27.6	156.1	14.9	
March	20.2	26.6	150.9	16.9	
April	17.6	24.0	168.5	15.1	
May	15.1	21.5	89.5	13.2	
June	13.2	19.4	174.9	14.3	
July	12.3	18.9	80.9	11.4	
August	13.1	20.1	72.4	7.8	
September	15.3	22.1	52.0	9.3	
October	16.9	23.6	91.4	12.6	
November	18.6	25.3	87.6	11.2	
December	19.9	26.6	123.0	13.5	

Table 3.1 Climate Summary Ballina Airport Weather Station

3.2 Topography and Hydrology

The site is undulating ranging from 130m AHD in the south to 40m AHD in the north interspersed with a series of gullies. The site drains in a north and north easterly direction via a series of gullies to the Brunswick River.

3.3 Geology and Soils

3.3.1 Geology

Based on the NSW Department of Planning & Environment Soil Landscapes of Central and Eastern NSW mapping (accessed October 2021), the local geological conditions comprise 3 different geological units:

- Southern section:
 - \circ $\;$ are described as Lismore Basalt $\;$
- Middle section
 - are described as Neranleigh-Fernvale beds
 - Northern section
 - $\circ~$ are described as Undifferentiated alluvial deposits; sand, silt, clay and gravel; some residual and colluvial deposits

3.3.2 Soils

According to Soil Landscapes of Central and Eastern NSW Morand (1992) the local soils are described as shallow (<50 cm), poorly drained Lithosols and localised shallow

(50–100 cm), poorly drained Yellow Podzolic Soils (Gn2.34, Dy3.21) on quartzites and phyllites.

Moderately deep (100–150 cm),moderately well-drained Red Podzolic Soils (Dr2.31,Dr3.21, Gn3.74) with Yellow Podzolic Soils (Dy2.51,Dy3.21) on fine-grained sediments. Deep (>150 cm), moderately well-drained Red Earths (Uf4, Uf6) and Red Podzolic Soils (Dr2.21) on lower slopes.

3.4 Acid Sulfate Soils

Based on the Atlas of Australian Acid Sulfate Soils, the site is mapped as an area of *Class B Low Probability of occurrence:* 6-70% chance of occurrence.

3.5 Hydrogeology

There are no registered groundwater bores on the subject site. A search of NSW Department of Primary Industries Office of Water licensed bores within a 2km radius of the site identified 49 registered bores. The results of the groundwater bore search are summarised in **Table 3.2** and below and included in full in **Appendix A**.

Groundwater Boreholes

Boreholes within the dataset buffer:

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)		Elev (AHD)	Dist	Dir
GW303 945	30BL180 384	Bore	Private	Domestic	Domestic		03/12/2002	27.00	27.00	220	10.0 0	1.010		86m	North West
GW307 045	30BL185 863	Bore	Private	Farming	Farming		22/01/2012	36.60	36.60	105	18.0 0	1.263		192m	North East
GW306 766	30BL180 808	Bore	Private	Domestic, Stock	Domestic, Stock		01/01/1992	36.50			35.6 0	0.200		233m	South West
GW306 231	30BL184 454	Bore	Private	Domestic	Domestic		20/09/2007	30.50	30.50	140	12.0	0.632		256m	North East
202100					UNK								66.80	387m	South West
GW301 324	30BL176 989	Bore		Domestic	Domestic			24.00	24.00	Good	6.00	0.505		463m	South West
GW037 039		(Unkn own)	Other Govt		General Use		01/01/1968	29.50	29.60					507m	East
GW053 777	30BL122 276, 30BL178 740		Private	Domestic, Infigation, Stock	Irrigation		01/02/1983	3.00	3.00	0-500 ppm				562m	South
GW302 968	30BL179 165	Bore		Domestic, Stock	Domestic, Stock		10/12/2000	42.00	42.00	200	12.0	1.000		623m	East
GW061 667	30BL134 081	Excav ation	Private	Domestic, Stock	General Use			1.80			_			753m	South East
GW301 485	30BL178 039			Domestic	Domestic		07/05/1998	35.00	35.00		9.80	0.688		803m	South
GW068	30BL139 891	Bore	Private	Domestic, Stock			09/08/1989	19.50	19.50	Good	3.00	0.470		814m	South
GW303 617	30BL181 010	Bore		Domestic	Domestic		13/12/2002	30.50	30.50	120	9.00	5.052		818m	North East
GW067 125	30BL144 721			Domestic	Domestic		06/12/1991	36.00	36.00	Good	20.0	0.708	75.00	873m	North
GWD64	30BL136	Bore	Private	Domestic,	Domestic,		01/09/1987	25.00	25.00	Good	0			956m	South
405 GW064	481 30BL136	Bore	Private	Stock Domestic	Stock Domestic		01/07/1987	27.00	27.00					962m	East South
596 202100	554				UNK								32.47	1082m	East North
07 GW302	30BL178	Bore	Private	Domestic	Domestic,									1192m	
064 GW300	195 30BL177	Bore		Domestic	Irrigation Domestic		30/11/1996	31.00	31.00	Good	8.00	7.578		1275m	
548 GW307	501 30WA30	Bore	Private	Domestic	Domestic		14/10/2011	18.00	18.00		7.50	0.320		1304m	West North
025 GW068	7417 30BL139	Bore	Private	Domestic			23/08/1989	12.00	12.00		4.00	0.300		1311m	North
148 GW071	950 30BL153	Bore		Domestic	Domestic		26/10/1993	41.00	41.00	Good	23.0	0.354		1315m	East
397 GW300	320 30BL177	Bore		Domestic	Domestic		21/11/1996	15.25	15.25		0 6.50	0.375		1357m	North
589 GW301	400 30BL177	Bore		Domestic	Domestic		04/08/1997	13.70	13.70		5.80	0.750		1418m	North
453 GW304	764 30BL181	Bore	Private	Domestic	Domestic		31/12/1996	15.00	15.00		10.0	5.500		1437m	South
016 GW305	170 30BL180		Private	Stock	Domestic,		08/10/2005		24.00		Ő	1.000		1454m	West
699 GW306	737 30BL184		Local	Monitoring	Stock Monitoring		03/10/2006	7.50	7.50		3.80			1457m	
088	037	bure	Govt	Bore	Bore		00102000		1.00		0.00			142111	2000
GW No	No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)		Salinity (mg/L)			(AHD)	Dist	Dir
GW304 661	30BL179 971	Bore	Local Govt	Monitoring Bore	Monitoring Bore		25/02/2002	2 3.50	3.50	1				1475m	East
GW303 247	30BL179 958	Bore		Domestic, Stock	Domestic, Stock		23/04/200	2 17.00	17.00	1 C				1520m	South West
GW303 446	30BL180 342	Bore		Domestic, Farming, Irrigation, Stock	Domestic, Farming, Irrigation, Stock		01/06/2003	2 48.80	48.80	1		2.970	0	1561m	South West
GW305 334	922			Domestic, Farming, Irrigation	Domestic, Stock		13/09/200			90	0		0	1573m	West
GW306 086	30BL184 037	Bore	Govt	Monitoring Bore	Monitoring Bore		03/10/200	5 7.00	7.00	1	4.00	1		1586m	South East
GW063 658	30BL138 210	Bore	Private	Domestic, Stock	Domestic, Stock		01/10/1988	5 4.00	4.00	0				1612m	South East
GW301 417	30BL177 217	Bore		Domestic, Stock	Domestic, Stock		05/02/1996	5 22.00	22.00	Good	6.00	0.30	C	1625m	South West
GW064 135	30BL136 176	Bore	Private	Domestic, Stock	Domestic, Stock		01/02/1987	7 14.00	17.00	0				1638m	South East
GW306 087	30BL184 037	Bore	Local Govt	Monitoring Bore	Monitoring Bore		03/10/2006	5 7.00	7.00	1	4.50	1		1681m	South East
GW304 662	30BL179 971	Bore	Local Govt	Monitoring Bore	Monitoring Bore		25/02/2004	4 5.80	5.80	0				1694m	South East
GW070 565	30BL150	Bore	Private	Domestic	Domestic		01/09/1990	2 22.00	22.00	Good	10.0	0.590	30.00	1696m	South East
GW307	30BL181 223	Bore	Private	Domestic	Domestic		04/07/2002	2 50.00	50.00	280	15.0	0.50	C	1712m	North
GW303 378		Bore		Domestic	Domestic		01/06/2003	2 3.20)			1.00	0	1717m	East
GW303 129		Bore		Domestic	Domestic		21/11/200	1 32.00	32.00	0				1833m	North
		Dees	Detunin	Domestic	Domestic		03/09/2007	2 26 00	26.00		45.0	0.53		1010	North

GW304 30BL181 Bore Private Domestic Domestic 03/09/2003 26.00 26.00 15.0 0.531 1842m North GW304 30BL181 Bore Domestic, Domestic, Stock 21/09/1993 55.00 Good 30.0 0.700 1857m North GW304 30BL184 Bore Local Monitoring Monitoring 04/10/2006 6.00 6.00 1.20 0 187m North GW301 30BL184 Bore Local Monitoring Monitoring 04/10/2006 6.00 6.00 1.20 0 187m South GW301 30BL177 Bore Local Monitoring Domestic, Stock Domestic, Stock 25/10/1997 25.90 6.00 1.20 0 1837m North 202100 To Stock Domestic, Stock Domestic, Stock 10 195 m North 202001 No Bore														
390 942 Stock Sto		Bore	Private	Domestic	Domestic	03/09/2003	26.00	26.00		_	0.531		1842m	North
081 036 Govt Bore Bore Bore East East East GW301 30BL177 Bore Domestic, Farming, Stock Domestic, Farming, Stock Domestic, Farming, Stock Domestic, Farming, Stock 25/10/1997 25.90 25.90 4.00 2.250 1892m North West 202100 Image: Contract of the stock UNK Image: Contract of the stock 37.23 1896m North GW304 30BL180 Bore Domestic Domestic 05/05/2004 54.00 54.00 2.50 1955m North 202001 Image: Contract of the stock UNK Image: Contract of the stock 17.31 1960m South GW306 30BL184 Bore Local Monitoring 04/10/2006 7.50 7.50 4.50 1972m South		Bore				21/09/1993	55.00	55.00	Good		0.700		1857m	North
459 813 Farming, Stock Farming, Stock Farming, Stock Farming, Stock Farming, Stock West 202100 UNK UNK 37.23 1896m North GW304 875 Domestic Domestic 05/06/2004 54.00 54.00 2.50 2.500 1955m North 202001 UNK UNK UNK 17.31 1960m South 202001 UNK UNK 17.31 1960m South South 1972m South		Bore				04/10/2005	6.00	6.00		1.20			1872m	
10 0		 Bore		Farming,	Farming,	25/10/1997	25.90	25.90		4.00	2.250		1892m	
767 876 UNK 17.31 1960m South East GW306 30BL184 Bore Local Monitoring 04/10/2006 7.50 7.50 4.50 1972m South					UNK							37.23	1896m	North
East GW306 30BL184 Bore Local Monitoring Monitoring 04/10/2006 7.50 7.50 4.50 1972m South		Bore		Domestic	Domestic	05/06/2004	54.00	54.00		2.50	2.500		1955m	North
	202001				UNK							17.31	1960m	
		Bore				04/10/2006	7.50	7.50		4.50			1972m	

Preliminary Site Investigation 55 Settlement Road Main Arm

9

4. Site History

4.1 Historical Aerial Photography Review

A search of historical aerial photographs was conducted of the subject site in an attempt to identify past uses on or about the future building envelopes. Aerial photographs were reviewed for the followings years: 1942, 1958, 1966, 1971, 1979, 1987, 1997, 2006, 2010, 2014 and 2020 see **Appendix A**). Information garnered from the historical photographs is summarised in **Table 4.1** below:

Photograph	Site Observations
1942	The 1942 photograph shows the site predominately cleared with what appears to be banana cultivation in the southern and eastern portion of the site with the exception of the steeper slopes to the south. The northern portion of the site is cleared and there appears to be a structure (possibly a dwelling) in the northern east of the site.
	The adjoining land to the east and west on north facing slopes appears to be under banana cultivation
1958	In the 1958 photograph it appears that the bulk of land has reverted to grazing. It is difficult to identify any horticultural activity. The structure identified as a potential dwelling in the 1958 photograph is no longer visible. The Durrumbil cattle dip site can be identified about 40m north of the north west boundary of the subject site.
1966	Apart from regrowth of native vegetation there is no significant changes
1971	Recommencement of what appears to be banana cultivation on the eastern side of the site in conjunction with banana cultivation on the adjoining property to the east. The north east portion of Lot 4

 Table 4.1
 Review of Historical Aerial Photographs

Photograph	Site Observations
	DP 585928 No 34 Settlement Road has
	bene cleared for quarrying
1979	The 1979 photograph shows cleared
	area on the western side of the site
	(possibly bananas or passionfruit (as
	advised by current owner Glenn Wright).
	Bananas continue to be cropped on the
	eastern portion of the site in conjunction
	with banana cultivation on the adjoining property to the east.
	The quarry remains on No 34 Settlement
	Road
1987	By 1987 banana cultivation had desisted
	in the eastern portion. The western
	portion remained is under cultivation
	(possibly passionfruit and bananas) The
	quarry remains on No 34 Settlement
1007	Road
1997	In 1997 the aerial photography shows banana cultivation recommenced in the
	eastern portion and some cropping
	remains in the eastern portion. A shed is
	now located in the south eastern portion
	and evidence of a small structure
	(current dwelling) in the mid-eastern
	portion.
	The Durrumbil cattle dip site is no longer
	visible. The quarry remains on No 34
2006	Settlement Road In 2006 banana cultivation has ceased in
2006	the eastern portion but has continued in
	the adjoining property to the east.
	The dwelling in mid-east section has
	expanded. Passionfruit appears to have
	been retained along the mid-western
	boundary, however there is no evidence
	of banana production onsite.
	Regrowth continues over formerly
	cultivated land. The quarry remains on
	No 34 Settlement Road
2010	By 2010 the photograph does not show
	any evidence of cropping onsite. There
	is a new driveway (turning circle) to the
	west of the dwelling. Regrowth of native
	vegetation continues to occur. The
	quarry remains on No 34 Settlement Road

Photograph	Site Observations
2014	In 2014 there are no significant changes to the subject site.
2020	In 2020 there are no significant changes to the subject site. The quarry is no longer visible on No 34 Settlement Road

4.2 Australian and NSW Heritage Register

On 15 September 2021 a search of the:

- Australian Heritage Trust database did not reveal any heritage listed items on within close proximity of the subject site
- Commonwealth Heritage List did not reveal any heritage listed items on within close proximity of the subject site
- NSW State Heritage Items did not reveal any heritage listed items on within close proximity of the subject site
- Byron Local Environmental Plan Heritage Items did not reveal any heritage listed items on within close proximity of the subject site

State and Local Authority Records

4.3 Contaminated Land Record Search

4.3.1 Contaminated Land Record

A search of the Contaminated Land Record (EPA 2010b) for the Byron Shire Council Local Government Area (LGA) did not identify any notices on or near the site (see **Appendix A**).

4.3.2 Protection of the Environmental Operations Act Licenses

A search of the current list (EPA 2010c) of licensed activities as per Schedule 1 of the Protection of the Environment Operations Act 1997 did not identify any licensed activities on, or within close proximity of the subject site.

4.4.3 Cattle Tick Dip Sites

A search of the NSW Department of Primary Industry (DPI) Cattle Dip Site Locator tool

(https://www.dpi.nsw.gov.au/animals-and-livestock/beef-cattle/health-anddisease/parasitic-andprotozoal- diseases/ticks/cattle-dip-site-locator) indicated that the former Durrumbil cattle dip site has been decommissioned and is located on the northern side of Settlement Road, (Lot 4 DP 585928) approximately 173m north west of the existing dwelling on the subject site and therefore within the 200m radius NSW EPA investigation zone.

According to the NSW DPI *Decommissioned* – means all the standing structures, shed, fencing and roof have been dismantled. The bath itself, if present, is emptied of all chemical fluid and may have contaminated timbers from the roof and draining pen put into it and then is capped with concrete lids. The bath may have already been demolished prior to decommissioning in which case it is usually smashed and buried. An information plaque is attached to one of the concrete lids to indicate its

Departmental file number, dip name and direction of the dipping. Clean soil may be spread around the bath to run flush with the bath edge and then grassed. The draining pen concrete floor is usually left intact so as not to disturb the possibly contaminated soil.

Cattle Dips of the Northern Rivers Region 55 Settlement Road, Main Arm, NSW 2482

A series of chemicals including arsenic, DDT, Dioxathion, Dioathion Chlordimeform and Amitraz were used in the dipsite from 1945 until 1976.

Chemical Details

IMPORTANT NOTE: Chemical history has been retrieved from a copied laboratory log. In some cases it may be confirmed by entries in the hard copy lease folder but generally the chemical record is based on this single lab document. It is possible that there are inaccuracies as well as errors made

Chemicals used in dip bath	Date first used
ARSENIC	8/45
DDT	12/60
DIOXATHION	10/62
DIOXATHION CHLORDIMEFORM	10/73
AMITRAZ	12/76

4.5 Underground services and stormwater

Underground assets such as electricity and communications provide preferential pathways for contaminant migration.

4.6 Integrity Assessment

The site history information documented above is generally consistent with the aerial photographs, and the physical condition of the site. Based on the information available, TFA considers that sufficient historical information and site condition information has been obtained to allow for a thorough investigation of the environmental condition of the site.

5. Sampling & Quality Assurance Plan

5.1 Overview of DQO Process

The DQOs process is a planning tool developed to ensure that any data collected is of sufficient quality and quantity to support defensible decision making. It is a process used to define the type, quantity and quality of data needed to support decisions relating to the environmental condition of a site and provides a systematic approach for defining the criteria that a data collection design should satisfy.

It is recognised that the most efficient way to accomplish these goals is to establish criteria for defensible decision making before the data collection begins, and then develop a data collection design based on these criteria. By using the DQOs process to plan the investigation effort, the relevant parties can improve the effectiveness, efficiency and defensibility of a decision in a resource and cost-effective manner. DQOs have been developed to detail the type of data that is needed to meet the overall objectives of this project. The DQO's presented in this document have been developed with procedures stated in the following guidelines:

Prior to conducting site works, TFA undertook the data quality objectives (DQOs) planning process.

Table 5.1 DQOs Planning Process Output – Estimation Process

Sum	Step 1 – State the problem Summarise the contamination problem that will require new environmental data and identify the resources available to resolve the problem.						
1.1	 Write a brief summary of the contamination problem: A Preliminary Site Investigation under Chapter 4 Remediation of Land (SEPP Resilience and Hazards 2021) has been triggered by the Planning Proposal to Byron Shire Council (BSC) to amend the Byron Local Environmental Plan (BLEP) 2014 to formalise the use of the existing dwelling and detached dual occupancy dwelling. The subject site is located on land used for bananas and passionfruit cultivation where herbicides, pesticides and fertilisers have been applied, the soil therefore has the potential to have associated contamination, as well as being located within the EPA Investigation zone for the former Durrumbil cattle dipsite. Potential contaminants of concern include pesticides, herbicides, OCP, OPP, and heavy metals. 						
	Identify members of the planning team:						
	Person		Organisation		Role		
1.2	Tim Fitzroy		TFA		Project Director		
	Jacob Fitzroy		TFA		Environmental Economist		
1.3	Develop/refine the conceptual site model (CSM) (see Figure 3): A graphical representation of the conceptual site model for the site is included as Figure 3. Details are included of historical land use and areas of concern.						
1.4	Define the summary exposure scenarios (Y/N)*:						
1.4	Soil/Dust	Y	Groundwater	Y	Surface Water	Y	

Step 1 – State the problem

Summarise the contamination problem that will require new environmental data and identify the resources available to resolve the problem.

Dermal	R/M	Dermal		Dermal	-
Ingestion	R/M	Ingestion		Ingestion	-
Inhalation	R/M	Inhalation		Inhalation	-
Ecological	-	Ecological	R/M	Ecological	Y
	* R = residential, RC = recreational, C = commercial worker, M = maintenance worker (i.e., during				

site works/construction); B = local bores add additional if required

Step 2 - Identify the decision

To identify the decision that requires new environmental data to address the contamination problem.

2.1 If identified Contaminants of Concern are detected in soils or groundwater exceed Tier 1 or Tier 2 Risk Assessment Criteria. If the 95% UCL does not exceed Tier 1 of Tier 2 Risk Assessment Criteria a Human health/ ecological pathway is considered to not exist.

Step 3 – Identify the inputs to the decision

To identify the information that will be required to support the decision and specify which inputs require new environmental measurements.

Identify the information that will be required to resolve the decision statements, including existing information and new environmental data, and identify the sources for each item of information required:

Existing information:

No previous reports for this property

New environmental data:

3.1 Measurements of soil, groundwater contamination concentrations with potential contaminants of concern (PCOCs).

Soil

16 metals (silver, arsenic, lead, cadmium, chromium, copper, manganese, nickel, selenium, zinc, mercury, iron, aluminium, beryllium, boron and cobalt), organochlorine pesticides (OCPs) and organophosphorus pesticides (OP's).

 3.2
 3.2
 Identify the information needed to establish the action level: For soil
 HIL A residential in NEPM, 2013 has been applied
 Confirm that appropriate analytical methods exist to provide the necessary data:
 3.3
 Feasible analytical methods, both field and laboratory will be consistent with existing guidance

	4 - Define the boundaries of the study
To d	efine the spatial and temporal boundaries that the data must represent to support the decisions.
	Specify the characteristics that define the population of interest:
4.1	The investigation area is currently limited areas on the site to the areas that are currently not occupied by building structures and underground services
	Investigation areas are presented in Figure 2.
	Define the geographic area and media to which the decision statement applies:
4.2	The investigation boundary is shown on Figure 1. Media is also stratified depending on the nature of the material encountered (i.e., fill material/natural soil)
4.3	When appropriate, divide the populations into strata that have relatively homogenous characteristics:
	Populations consist of, fill material, natural soil, and groundwater beneath the site.
4.4	Determine the time frame to which the decision applies: This timeframe may be affected by other external factors, which may include the following: Access to Driller
	Inclement weather delaying progress
	Determine when to collect data:
4.5	Rain or flood conditions will likely limit access. Works will be undertaken during normal working hours.
	Define the scale of the decision making:
4.6	Update as required
	Identify any practical constraints on data collection:
4.7	The following constraints are likely to impact data collection: Rain and flood conditions will likely limit access Presence of underground services Advancement into areas cleared of building structures and underground services grass areas only

Step	Step 5 - Develop the analytic (statistical) approach					
Deve	Develop a logical "if, then, else" statement that defines the conditions that would cause the					
decis	decision maker to choose among alternative actions.					
5.1	Specify the statistical parameter that characterises the population of interest, such as mean, median, maximum or proportion, etc.: The 95% UCL for will be the key characteristic. Other data evaluation will entail: No sample will exceed 250% of the criteria Standard deviation will be < 50% criteria 95% UCL is < criteria					
5.2	Specify the action level for the decision: Analytical actions levels based on residential criteria with garden/accessible soil (home-grown produce < 10% fruit and vegetable and no poultry) in NEPM 1999, amended 2013. The criteria is not clean-up criteria; therefore, exceedances will be screened to determine whether further investigation is required.					
5.3	Confirm that measurement detection will allow reliable comparisons with the action level: Samples will be collected and submitted for NATA accredited laboratory analysis to determine site conditions. Standard limits of reporting (LOR) are less than the criteria.					
5.4	Combine the outputs from the previous DQOs steps and develop an "if, then, else" theoretical decision rule based on the chosen action level: If the statistical parameters of the data exceed applicable action levels, further remediation/assessment or management will be required at the site. If not, no further remediation will be required at the site.					

Step	6 – Specify performance or acceptance criteria
To s	pecify probability limits for false rejection and false acceptance decision errors.
	Specify the decision rule as a statistical hypothesis test:
6.1	Null hypothesis (HO) is the 95% UCL for concentration for soil is > action level; and Alternative hypotheses (HA) the 95% UCL for concentration for soil is ≤ action level.
	Examine consequences of making incorrect decisions from the test:
6.2	False rejection or Type I error of determining the site is suitable when it is not (wrongly rejects a true HO). Consequence is potential risks to human health and/or the environment.False acceptance or Type II error of determining the site is not suitable when it is (wrongly accepts a false HO). Consequence is unnecessary expenditure of resources or a site not being used for its highest value.
	Place acceptable limits on the likelihood of making decision errors:
6.3	Decision errors occur when accurate analytical results generated from tiny samples (sampling unit) are assumed to represent the concentrations of much larger volumes of matrix, but that extrapolation is invalid because confounding variables have not been acknowledged or controlled. No sample result will exceed 250% of the criteria. Standard deviation will be < 50% criteria. 95% UCL is < criteria.

	Step 7 – Optimise the design for obtaining data To identify a resource effective sampling and analysis design for generating data that are expected to						
	satisfy the DQOs.						
7.1	Document the final sampling and analysis design, along with a discussion of the key assumptions underlying this design: Refer to SAQP section of report.						
7.2	Detail how the design should be implemented, together with contingency plans for unexpected events: Refer to SAQP section of report.						
	Determine the quality assurance and quality control (QA/QC) procedures that would be performed to detect and correct problems to ensure defensible results: The field QA, and the field and laboratory QC, are described in the sampling, analysis and quality plan (SAQP). In summary, the following QC soil and groundwater samples are proposed in accordance with the NEPM 2013.						
	Field QC samples		Lab QC samples				
7.3	Blind duplicate	≥ 5%	Lab blank	≥ 1/lab batch			
	Blind triplicate	≥ 5%	Surrogate spike				
			LCS	≥ 1/lab batch			
	Trip blank (vol)	≥ 1/field batch	Matrix spike	≥ 1/media type			
	Trip spike (vol)	≥ 1/field batch	Lab duplicate	≥ 10%			
7.4	Document the operatio sampling, analysis, and		l assumptions of the selec	ted design in the			

5.2 Possible Contaminant Sources

Despite the lack of recent use of chemicals at the site, historical use is likely at the site. **Table 5.2** below lists the sources of potential contamination at the site and their associated contaminants of concern. The site has been subject to a number of lands

uses that have the potential to be contaminating activities. Based on the site history information, site inspection and surrounding land uses, the potentially contaminating activities were identified as:

- Pesticides, Herbicides, OCP, OPP, and heavy metals used on banana and passionfruit
- Herbicides used on cattle grazing land

Table 5.2 Potential Contaminants of Concern for Identified Activities

Potential contaminants of concern (PCOC) related to these suspected activities are presented below

Potential contaminants of concern (PCOC)	Suspected Activities (source)
Organochlorine/organophosphorus pesticide	used in pesticides for cropping
Heavy Metals	metals including arsenic, cadmium, chromium, copper, lead, nickel, zinc, mercury. Found in pesticides, and many waste products.

Technical guidance considered in preparing these DQOs includes:

- NSW EPA (formerly Office of Environment and Heritage (OEH) (2011) Guidelines for Consultants Reporting on Contaminated Sites.
- NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd edition).
- NSW EPA (2012) Guidelines for the Assessment and Management of Sites Impacted by Hazardous Ground Gases.
- National Environment Protection Council (NEPC) National Environment Protection
- (Assessment of Site Contamination) Measure 1999 (ASC NEPM (2013) Schedule
- B2: Guideline on Site Characterisation (2013).

5.3 Relevant Environmental media

The environmental media considered relevant for the investigation consisted of site soil.

5.4 Relevant Environmental Criteria

5.4.1 Soil (General Contaminates)

For soil, the appropriate and adopted criteria are based on the ASC NEPM 2013, in particular the health investigation levels (HILs), environmental investigation levels (EILs), environmental screening levels (ESLs) applicable for residential A land use.

Residential land use criteria has been adopted as the proposed development will be residential for both HIL and HSL

HSLs and ESLs – soil type

Based on the nature of the soil, clay soil criteria have been used as the soil type for deriving the HSLs and ESLs.

6.1 Preliminary Site Investigations

The field work was undertaken in general accordance with the DQOs. Field works were conducted on:

• 14 October 2021 for the soil investigation

All fieldwork was completed by Tim Fitzroy. The sampling and analytical strategy and methodology are described below. The results of the assessment are provided in Section 7. Soil sample locations are shown on **Figure 5**. On the days of the site assessments the weather was fine. Photographs of the subject site can be seen in **Appendix B**.

6.2 Visible Signs of Contamination

The Investigation Area was assessed on foot in order to identify any signs of contamination. In general, no obvious signs of contamination (such as plant stress, surface spills, waste materials, odours etc.) were evident during the site investigation.

6.3 Odours

There were no obvious odours akin to contamination observed during site inspections.

6.4 Flood Potential

There is no likely of flooding on the subject site.

6.5 Presence of Drums, Wastes and Fill Material

There was no evidence of drums, waste and fill material.

6.6 Methodology

The objective of this preliminary investigation is to gather information with regard to the type, location, concentration and distribution of contaminants to determine if the subject site represents a risk of harm to end users and sensitive receptors. To determine this, soil sampling and laboratory analysis has been conducted upon surface soils collected from the study area.

The following sampling, analysis and data quality objectives have been adopted for this site investigation:

- to confirm the soils in the vicinity of the existing dwelling and farm shed at the site do not pose a risk to human health or the environment through soil contamination.
- to employ quality assurance when sampling, assessing and during evaluation of the subject soils.

 to ensure that decontamination techniques are applied during the sampling procedure and that no cross contamination of samples occurs.

6.6.1 Soil (general contaminates)

Soil sampling around the existing dwelling was restricted due to existing hard landscaping and decks and a gully to the east and north. Sampling was undertaken in close proximity of the dwelling to the west and south. NSW EPA, 1997 states that for a site of 2,000 sq. m, 8 sample points are required. The frequency of locations sampled is in line with the minimum sampling requirements for circular hotspots.

Soil sampling was also undertaken around the detached dual occupancy dwelling. A total of 8 soil samples were collected from the vicinity of the detached dual occupancy dwelling.

The sample locations TFA1- TFA16 had representative samples collected from each location using the methodology described in the following sections. All samples were tested individually plus 2 QA samples (1 field sample and 1 laboratory duplicate).

Systematic sampling pattern was adopted within the vicinity of the dwelling and detached dual occupancy dwelling sites (see **Figure 4A** and **4B**).

In accordance with the Sampling Design Guidelines, the following sampling method was used:

- The sampling procedure utilised in this investigation was in accordance with AS 4482.1 – 2005.
- Eight (8) surface soil samples were collected (TFA1-TFA8) from around the dwelling.
- Eight (8) surface soil samples were collected (TFA9-TFA16) from around the detached dual occupancy dwelling.
- Two Quality Assurance samples were also collected.
- All samples were collected from the surface soil horizon between 0 and 150 mm below the surface using a 70 mm diameter hand auger.
- The soil samples were sent to the Environmental Analysis Laboratory (EAL); for analysis and determination of residual metals, chemicals and organo-chlorines and organophosphate concentrations.
- All soil samples were placed into an esky with ice bricks, and delivered to the Environmental Analysis Laboratory at Southern Cross University, Lismore. Metals analysis was conducted by EAL and quality control. Analysis is conducted using a Perkin Elmer ELANDRC-e ICPMS (Inductively Coupled Plasma Mass Spectrometry). Chain of custody forms, laboratory quality assurance and laboratory quality control documentation are available on request.
- The analysis of pesticides was subcontracted to the NATA-registered Labmark laboratory.
- Chain of Custody forms, which identified the sample identification codes, the collection dates and the type of analysis to be undertaken were fully completed and delivered with the samples (see **Appendix C**).
- Residual samples were stored, frozen and retained by *Environmental Analysis* Laboratory pending the need for additional or repeat analysis.
- Laboratory Results are available in **Appendix D**.

6.7 Data Usability

A background to data usability is provided in **Appendix E.** All site work was completed in accordance with standard *TFA sampling protocols*, including a QA/QC programme and standard operating procedures.

A data usability assessment has been performed for the sampling undertaken during this investigation, as summarised in **Appendix E** and includes:

- Summary of field quality assurance/quality control
- Field quality control soil samples summary
- Summary of laboratory quality assurance/quality control.

Following this discussion, the data usability assessment shows that the data is of suitable quality to support the conclusions made in this report.

6.8 Conditions Encountered

The site is an irregular shape and is located on the southern side of Settlement Road. The site is undulating ranging from 130m AHD in the south to 40m AHD in the north interspersed with a series of gullies. Surface soil conditions comprised medium clay to clay loam.

• Dwelling

•

The existing dwelling is about 20 years old comprising, timber floor, metal roof and manufactured board. The perimeter of the dwelling is extensively landscaped to the north and east including paving plus a timber deck extending to the south. Soil sampling around the existing dwelling was restricted due to existing hard landscaping and decks and a gully to the east and north.

Detached dual occupancy dwelling.

The detached dual occupancy dwelling comprises timber floor, metal roof and manufactured board. It is our understanding that the shed was originally used for packing of bananas.

7.1 Soil

Table 7.1	Summary Results Laboratory Analysis of Soil for Metals, OCs &
OPs	

Analyte	Health Criteria 0m to <1m	Ecological Criteria	Management Limits	Site Data			
	HIL/HSL mg/kg	EIL/ESL (mg/kg)	ML (mg/kg)	No. samples analysed	Number of exceedances	Max mg/kg	Meets Screening criteria?
Heavy Metals		•		•			
(Arsenic)	100	100	NA		0	26	Yes
(Lead)	300	1,100	NA		0	87	Yes
Cadmium	20	-	NA		0	<0.5	Yes
Chromium	100	410	NA	18	0	11	Yes
Copper	6,000	230	NA		0	45	Yes
Nickel	400	270	NA		0	11	Yes
Zinc	7,400	770	NA		0	230	Yes
Mercury	40	-	NA		0	0.13	Yes
(OCs)							
(Endrin)	10	NL	NA	18	0	<0.1	Yes
(Dieldrin)	6	NL	NA		0	<0.1	Yes
(DDD, DDE and DDT)	240	180	NA	10	0	<0.2	Yes

The analytical results are presented in the Soil Analytical Data Table 7.1 and in the laboratory, analysis indicate compliance with the Health Investigation Levels (HILA) and Ecological Investigation Levels (EILs) outlined in NEPM 1999 (2013) (see **Appendix D**).

8. Discussion and Conceptual Site Plan

8.1 Discussion

The results of preliminary assessment of the subject site indicate compliance with the National Environment Protection Measure (NEPM 2013) HILA *Residential with garden/accessible soil also includes children's day care centres, preschools and primary schools* and *Ecological Soil Investigation Levels* and Ecological Screening Levels (HSL's) (NEPM 2013).

A Conceptual Site model has been prepared with respect to the proposed investigation.

8.2 Conceptual Site Model

The conceptual site model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site, following the site investigation is detailed in Table 8.1 below.

Table 8.1 CSM Discussion

Element	Site Specific Information		
Potential sources of contamination and	Metals, and chemicals may be present		
contaminants of concern.	from banana and passionfruit production		
	and cattle dip-site.		
Potentially affected media, such as	Media consists of soil.		
recovered aggregate and soil.			
Human and ecological receptors.	Potential human & ecological receptors		
	include:		
	 Construction workers; 		
	Residents		
	Brunswick River		
Potential and complete exposure	Subsurface infrastructure.		
pathway to human and/or environmental			
receptors.			

Based on the results of this assessment, the likelihood for chemical contamination to be present within proximity of the existing dwelling and detached dual occupancy dwelling is considered to be low.

9. Conclusions

This investigation is Tier 1 - preliminary site investigation, which is required to determine if contamination of the site's soil has occurred from past land usage in accordance with NEPM 1999 (2013), DUAP and EPA (1998). The investigation includes obtaining a history of land usage on the site and a preliminary soil-sampling regime. The results of the soil sample and groundwater analysis are compared with the Health Investigation Levels (HIL's) and Ecological Investigation Levels (EILs) outlined in NEPM 1999 (2013).

A search of the NSW Department of Primary Industry (DPI) Cattle Dip Site Locator tool (https://www.dpi.nsw.gov.au/animals-and-livestock/beef-cattle/health-anddisease/parasitic-andprotozoal- diseases/ticks/cattle-dip-site-locator) indicated that the former Durrumbil cattle dip site has been decommissioned and is located on the northern side of Settlement Road, Lot 4 DP 585928, approximately 173m north west of the existing dwelling on the subject site and therefore within the 200m radius NSW EPA investigation zone.

A total of sixteen boreholes (TFA1-TFA16 plus 2 QA samples) within proximity of the existing dwelling and detached dual occupancy dwelling were analysed for 16 metals (silver, arsenic, lead, cadmium, chromium, copper, manganese, nickel, selenium, zinc, mercury, iron, aluminium, beryllium, boron and cobalt), organochlorine pesticides (OCPs) and organophosphorus pesticides (OP's).

All of the soil samples show contaminant levels well below the most stringent Australian and New Zealand Environment and Conservation Council (ANZECC), National Environment Protection Measure (NEPM 2013) HILA Residential with garden/accessible soil and Ecological Soil Investigation Levels (NEPM 2013).

Based on the outcomes of this PSI there is no impediment to approval of the Planning Proposal to amend the Byron Local Environmental Plan (BLEP) 2014 to formalise the use of the existing dwelling and the detached dual occupancy dwelling located at Lot 5 DP585928, No 55 Settlement Road, Main Arm.

This report has been prepared by Tim Fitzroy of Tim Fitzroy & Associates.

IL At

Tim Fitzroy Environmental Health Scientist Environmental Auditor

Australia and New Zealand Environment and Conservation Council (ANZECC), 1992, Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites, Australia and New Zealand Environment and Conservation Council.

Environment Protection Authority, 1995, Contaminated Sites Sampling Design Guidelines, Environment Protection Authority, Sydney.

National Environment Protection Council (2013) 'Schedule B (1) Guideline on the Investigation Levels for Soil and Groundwater

Council of Standards Australia (2005) AS 4482.1-2005 Guide to the sampling and investigation of potentially contaminated soil – Non-volatile and semi-volatile compounds

NSW DEC (2006) Contaminated Sites – Guidelines for the NSW Site Auditor Scheme 2nd Edition

NSW EPA (2011) Guidelines for Consultants Reporting Contaminated Sites

National Environment Protection Council (NEPC) (2013) National Environment Protection (Assessment of Site Contamination) Measure

Contaminated land guidelines (NSW Environment Protection Authority 2020)

Northern Rivers Regional Councils (NRRC) Regional Policy for the Management of Contaminated Land (NRRC 2006)

©Tim Fitzroy & Associates 2024

The plans to this document were prepared for the exclusive use of Glenn Wright to accompany a Planning Proposal to amend the Byron Local Environmental Plan (BLEP) 2014 to formalise the use of the existing dwelling and the detached dual occupancy dwelling on the subject site and shall not to be used for any other purpose or by any other person or corporation. Tim Fitzroy & Associates accepts no responsibility for any loss or damage suffered howsoever arising to any person or corporation who may use or rely on this document for a purpose other than that described above.

Plans accompanying this document may not be reproduced, stored or transmitted in any form unless this note is included.

Tim Fitzroy & Associates declares that it does not have, nor expects to have, a beneficial interest in the subject project.

No extract of text of this document may be reproduced, stored or transmitted in any form without the prior consent of Tim Fitzroy & Associates.

Figure 1 Location map

Figure 4A Soil Sample Locations Dwelling

Preliminary Site Investigation 55 Settlement Road Main Arm

Figure 4B Soil Sampling Locations Detached Dual Occupancy Dwelling

Preliminary Site Investigation 55 Settlement Road Main Arm

Preliminary Site Investigation 55 Settlement Road Main Arm

Date: 15 Sep 2021 09:33:40 Reference: LS024158 EP Address: 55 Settlement Road, Main Arm, NSW 2482

Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.

Dataset Listing

Datasets contained within this report, detailing their source and data currency:

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)		No. Features within	No. Features within
Onderster Devendering		00/00/0004	00/00/0004	Quartark	-		100m	Buffer
Cadastre Boundaries	NSW Department of Finance, Services & Innovation	20/08/2021	20/08/2021	Quarterly	-	-	-	-
Topographic Data	NSW Department of Finance, Services & Innovation	25/06/2019	25/06/2019	As required	-	-	-	-
List of NSW contaminated sites notified to EPA	Environment Protection Authority	08/09/2021	08/09/2021	Monthly	1000m	0	0	0
Contaminated Land Records of Notice	Environment Protection Authority	06/09/2021	06/09/2021	Monthly	1000m	0	0	0
Former Gasworks	Environment Protection Authority	11/08/2021	11/10/2017	Quarterly	1000m	0	0	0
National Waste Management Facilities Database	Geoscience Australia	12/05/2021	07/03/2017	Annually	1000m	0	0	0
National Liquid Fuel Facilities	Geoscience Australia	15/02/2021	13/07/2012	Annually	1000m	0	0	0
EPA PFAS Investigation Program	Environment Protection Authority	23/08/2021	28/04/2021	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Investigation Sites	Department of Defence	02/08/2021	02/08/2021	Monthly	2000m	0	0	0
Defence PFAS Investigation & Management Program - Management Sites	Department of Defence	02/08/2021	02/08/2021	Monthly	2000m	0	0	0
Airservices Australia National PFAS Management Program	Airservices Australia	06/09/2021	06/09/2021	Monthly	2000m	0	0	0
Defence 3 Year Regional Contamination Investigation Program	Department of Defence	19/08/2021	19/08/2021	Quarterly	2000m	0	0	0
EPA Other Sites with Contamination Issues	Environment Protection Authority	02/02/2021	13/12/2018	Annually	1000m	0	0	0
Licensed Activities under the POEO Act 1997	Environment Protection Authority	16/08/2021	16/08/2021	Monthly	1000m	0	0	0
Delicensed POEO Activities still regulated by the EPA	Environment Protection Authority	16/08/2021	16/08/2021	Monthly	1000m	0	0	0
Former POEO Licensed Activities now revoked or surrendered	Environment Protection Authority	16/08/2021	16/08/2021	Monthly	1000m	4	4	4
UBD Business Directories (Premise & Intersection Matches)	Hardie Grant			Not required	150m	0	0	0
UBD Business Directories (Road & Area Matches)	Hardie Grant			Not required	150m	-	0	0
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Premise & Intersection Matches)	Hardie Grant			Not required	500m	0	0	0
UBD Business Directory Dry Cleaners & Motor Garages/Service Stations (Road & Area Matches)	Hardie Grant			Not required	500m	-	0	0
Cattle dips of the Northern Rivers region	NSW Dept. of Primary Industries	15/02/2021	15/02/2021	Annually	1000m	0	1	2
Points of Interest	NSW Department of Finance, Services & Innovation	19/08/2021	19/08/2021	Quarterly	1000m	0	0	3
Tanks (Areas)	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	0	0
Tanks (Points)	NSW Department of Customer Service - Spatial Services	19/08/2021	19/08/2021	Quarterly	1000m	0	0	0
Major Easements	NSW Department of Finance, Services & Innovation	19/08/2021	19/08/2021	Quarterly	1000m	0	0	8
State Forest	Forestry Corporation of NSW	25/02/2021	14/02/2021	Annually	1000m	0	0	0
NSW National Parks and Wildlife Service Reserves	NSW Office of Environment & Heritage	22/01/2021	11/12/2020	Annually	1000m	0	0	0
Hydrogeology Map of Australia	Commonwealth of Australia (Geoscience Australia)	08/10/2014	17/03/2000	As required	1000m	1	1	1
Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018	NSW Department of Planning, Industry and Environment	26/10/2020	21/02/2018	Annually	1000m	0	0	0

Dataset Name	Custodian	Supply Date	Currency Date	Update Frequency	Dataset Buffer (m)		No. Features within 100m	No. Features within Buffer
Groundwater Boreholes	NSW Dept. of Primary Industries - Water NSW; Commonwealth of Australia (Bureau of Meteorology)	24/07/2018	23/07/2018	Annually	2000m	0	1	49
Geological Units 1:250,000	NSW Department of Planning, Industry and Environment	20/08/2014		Annually	1000m	3	3	3
Geological Structures 1:250,000	NSW Department of Planning, Industry and Environment	20/08/2014		Annually	1000m	0	0	0
Naturally Occurring Asbestos Potential	NSW Dept. of Industry, Resources & Energy	04/12/2015	24/09/2015	Unknown	1000m	0	0	0
Atlas of Australian Soils	Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES)	19/05/2017	17/02/2011	As required	1000m	1	1	2
Soil Landscapes of Central and Eastern NSW	NSW Department of Planning, Industry and Environment	14/10/2020	27/07/2020	Annually	1000m	2	3	6
Environmental Planning Instrument Acid Sulfate Soils	NSW Department of Planning, Industry and Environment	19/08/2021	28/06/2021	Monthly	500m	0	-	-
Atlas of Australian Acid Sulfate Soils	CSIRO	19/01/2017	21/02/2013	As required	1000m	1	1	2
Dryland Salinity - National Assessment	National Land and Water Resources Audit	18/07/2014	12/05/2013	None planned	1000m	0	0	0
Mining Subsidence Districts	NSW Department of Customer Service - Subsidence Advisory NSW	19/08/2021	05/08/2021	Quarterly	1000m	0	0	0
Current Mining Titles	NSW Department of Industry	03/08/2021	03/08/2021	Monthly	1000m	0	0	0
Mining Title Applications	NSW Department of Industry	03/08/2021	03/08/2021	Monthly	1000m	0	0	0
Historic Mining Titles	NSW Department of Industry	03/08/2021	03/08/2021	Monthly	1000m	11	11	12
Environmental Planning Instrument SEPP State Significant Precincts	NSW Department of Planning, Industry and Environment	19/08/2021	07/12/2018	Monthly	1000m	0	0	0
Environmental Planning Instrument Land Zoning	NSW Department of Planning, Industry and Environment	19/08/2021	13/08/2021	Monthly	1000m	3	7	40
Commonwealth Heritage List	Australian Government Department of the Agriculture, Water and the Environment	18/05/2021	20/11/2019	Annually	1000m	0	0	0
National Heritage List	Australian Government Department of the Agriculture, Water and the Environment	18/05/2021	20/11/2019	Annually	1000m	0	0	0
State Heritage Register - Curtilages	NSW Department of Planning, Industry and Environment	19/08/2021	25/06/2021	Quarterly	1000m	0	0	0
Environmental Planning Instrument Local Heritage	NSW Department of Planning, Industry and Environment	19/08/2021	13/08/2021	Monthly	1000m	0	0	0
Bush Fire Prone Land	NSW Rural Fire Service	13/09/2021	23/08/2021	Weekly	1000m	2	2	3
Eastern Bushland Database (North Region)	NSW Office of Environment & Heritage	24/07/2016	01/01/1991	None planned	1000m	2	2	3
Ramsar Wetlands of Australia	Australian Government Department of Agriculture, Water and the Environment	24/02/2021	19/03/2020	Annually	1000m	0	0	0
Groundwater Dependent Ecosystems	Bureau of Meteorology	14/08/2017	15/05/2017	Annually	1000m	1	2	5
Inflow Dependent Ecosystems Likelihood	Bureau of Meteorology	14/08/2017	15/05/2017	Unknown	1000m	2	5	16
NSW BioNet Species Sightings	NSW Office of Environment & Heritage	06/09/2021	06/09/2021	Weekly	10000m	-	-	-

Site Diagram

	40m 5/DP585928 & & & & & & & & & & & & & & & & & & &	
G40m	238547m²	
Legend	A48m A48m Total Area: 238547m ²	
Site Boundary Internal Parcel Boundaries	Total Perimeter: 2.19km Disclaimers: Measurements are approximate only and may have been simplified or smaller lengths removed for readability. Parcels that make up a small percentage of the total site area have not been labelled for increased legibility.	Data Source Aerial Imagery: © Aerometrex Pty Ltd Coordinate System: GDA 1994 MGA Zone 56 Date: 15 September 2021

Contaminated Land

55 Settlement Road, Main Arm, NSW 2482

List of NSW contaminated sites notified to EPA

Records from the NSW EPA Contaminated Land list within the dataset buffer:

Map Id	Site	Address	Suburb	Activity	Management Class	Status	Location Confidence	Dist	Direction
N/A	No records in buffer								

The values within the EPA site management class in the table above, are given more detailed explanations in the table below:

EPA site management class	Explanation
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the Environmental Planning and Assessment Act 1979 (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record of Notices.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA's regulatory actions under the POEO Act are available on the POEO public register.
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the Protection of the Environment Operations Act 1997 (POEO Act).
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the Environmental Planning and Assessment Act 1979 (EP&A Act).
Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record of Notices.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997. A regulatory approach is being finalised.
Regulation under the CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or Protection of the Environment Operations Act 1997. Alternatively, the EPA may require information via a notice issued under s77 of the Contaminated Land Management Act 1997 or issue a Preliminary Investigation Order.

NSW EPA Contaminated Land List Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Contaminated Land

55 Settlement Road, Main Arm, NSW 2482

Contaminated Land: Records of Notice

Record of Notices within the dataset buffer:

Map Id	Name	Address	Suburb	Notices	Area No	Location Confidence	Distance	Direction
N/A	No records in buffer							

Contaminated Land Records of Notice Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority Terms of use and disclaimer for Contaminated Land: Record of Notices, please visit http://www.epa.nsw.gov.au/clm/clmdisclaimer.htm

Former Gasworks

Former Gasworks within the dataset buffer:

Map Id	Location	Council	Further Info	Location Confidence	Distance	Direction
N/A	No records in buffer					

Former Gasworks Data Source: Environment Protection Authority

 $\ensuremath{\mathbb{C}}$ State of New South Wales through the Environment Protection Authority

Waste Management & Liquid Fuel Facilities

55 Settlement Road, Main Arm, NSW 2482

National Waste Management Site Database

Sites on the National Waste Management Site Database within the dataset buffer:

Site Id	Owner	Name	Address	Suburb	Class	Landfill	Reprocess	Transfer	Loc Conf	Dist	Direction
N/A	No records in buffer										

Waste Management Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Liquid Fuel Facilities

National Liquid Fuel Facilties within the dataset buffer:

Map Id	Owner	Name	Address	Suburb	Class	Operational Status	Operator	Revision Date	Loc Conf	Dist	Direction
N/A	No records in buffer										

National Liquid Fuel Facilities Data Source: Geoscience Australia

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

PFAS Investigation & Management Programs

55 Settlement Road, Main Arm, NSW 2482

EPA PFAS Investigation Program

Sites that are part of the EPA PFAS investigation program, within the dataset buffer:

Map ID	Site	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

EPA PFAS Investigation Program: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Defence PFAS Investigation Program

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Investigation Program Data Custodian: Department of Defence, Australian Government

Defence PFAS Management Program

Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

Map ID	Base Name	Address	Loc Conf	Dist	Dir
N/A	No records in buffer				

Defence PFAS Management Program Data Custodian: Department of Defence, Australian Government

Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

Map ID	Site Name	Impacts	Loc Conf	Dist	Dir
N/A	No records in buffer				

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

Defence Sites

55 Settlement Road, Main Arm, NSW 2482

Defence 3 Year Regional Contamination Investigation Program

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

Property ID	Base Name	Address	Known Contamination	Loc Conf	Dist	Dir
N/A	No records in buffer					

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

EPA Other Sites with Contamination Issues

55 Settlement Road, Main Arm, NSW 2482

EPA Other Sites with Contamination Issues

This dataset contains other sites identified on the EPA website as having contamination issues. This dataset currently includes:

- · James Hardie asbestos manufacturing and waste disposal sites
- Radiological investigation sites in Hunter's Hill
- Pasminco Lead Abatement Strategy Area

Sites within the dataset buffer:

Site Id	Site Name	Site Address	Dataset	Comments	Location Confidence	Distance	Direction
N/A	No records in buffer						

EPA Other Sites with Contamination Issues: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

EPA Activities

55 Settlement Road, Main Arm, NSW 2482

Licensed Activities under the POEO Act 1997

Licensed activities under the Protection of the Environment Operations Act 1997, within the dataset buffer:

EPL	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

POEO Licence Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Delicensed & Former Licensed EPA Activities

EPA Activities

55 Settlement Road, Main Arm, NSW 2482

Delicensed Activities still regulated by the EPA

Delicensed activities still regulated by the EPA, within the dataset buffer:

Licence No	Organisation	Name	Address	Suburb	Activity	Loc Conf	Distance	Direction
N/A	No records in buffer							

Delicensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Former Licensed Activities under the POEO Act 1997, now revoked or surrendered

Former Licensed activities under the Protection of the Environment Operations Act 1997, now revoked or surrendered, within the dataset buffer:

Licence No	Organisation	Location	Status	Issued Date	Activity	Loc Conf	Distance	Direction
4292	FAR NORTH COAST COUNTY COUNCIL	COUNTY DISTRICT - LISMORE NSW 2480	Surrendered	06/09/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	0m	On-site
4653	LUHRMANN ENVIRONMENT MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW	Surrendered		Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	0m	On-site
4838	Robert Orchard	Various Waterways throughout New South Wales - SYDNEY NSW 2000	Surrendered		Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	Om	On-site
6630	SYDNEY WEED & PEST MANAGEMENT PTY LTD	WATERWAYS THROUGHOUT NSW - PROSPECT, NSW, 2148	Surrendered	09/11/2000	Other Activities / Non Scheduled Activity - Application of Herbicides	Network of Features	Om	On-site

Former Licensed Activities Data Source: Environment Protection Authority © State of New South Wales through the Environment Protection Authority

Historical Business Directories

55 Settlement Road, Main Arm, NSW 2482

Business Directory Records 1950-1991 Premise or Road Intersection Matches

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a premise or road intersection within the dataset buffer:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Property Boundary or Road Intersection	Direction
N/A	No records in buffer						

Business Directory Records 1950-1991 Road or Area Matches

Universal Business Directory records from years 1991, 1982, 1970, 1961 & 1950, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

Map Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
N/A	No records in buffer					

Historical Business Directories

55 Settlement Road, Main Arm, NSW 2482

Dry Cleaners, Motor Garages & Service Stations Premise or Road Intersection Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a premise or road intersection, within the dataset buffer.

Map Id	Business Activity	Premise	Ref No.	Year	Distance to Property Boundary or Road Intersection	Direction
N/A	No records in buffer					

Dry Cleaners, Motor Garages & Service Stations Road or Area Matches

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.

N	lap Id	Business Activity	Premise	Ref No.	Year	Location Confidence	Distance to Road Corridor or Area
Ν	I/A	No records in buffer					

Cattle Dips of the Northern Rivers Region 55 Settlement Road, Main Arm, NSW 2482

Cattle Dips

55 Settlement Road, Main Arm, NSW 2482

Cattle Dips of the Northern Rivers Region

Cattle dip sites within the dataset buffer:

Dip Name	Road	Town	Dip Status	Licence / Lease Status	Licence / Lease Expiry Date	Distance	Direction
DURRUMBIL	SETTLEMENT ROAD	MAIN ARM	DECOMMISSION	LAPSED	31/07/2004	37m	North
MAIN ARM	COOPERS LANE	DURRUMBUL	LAPSED	ACTIVE		696m	East

Cattle dip site data provided by the NSW Department of Primary Industries.

Topographic Map 2015

Historical Map 1974

Historical Map c.1942

55 Settlement Road, Main Arm, NSW 2482

Points of Interest

What Points of Interest exist within the dataset buffer?

Map Id	Feature Type	Label	Distance	Direction
20584	Rural Place	DURRUMBUL	359m	East
20888	Community Facility	DURRUMBUL HALL	495m	East
20820	Primary School	DURRUMBUL PUBLIC SCHOOL	517m	East

Topographic Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

55 Settlement Road, Main Arm, NSW 2482

Tanks (Areas)

What are the Tank Areas located within the dataset buffer?

Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
N/A	No records in buffer					

Tanks (Points)

What are the Tank Points located within the dataset buffer? Note. The large majority of tank features provided by LPI are derived from aerial imagery & are therefore primarily above ground tanks.

Map Id	Tank Type	Status	Name	Feature Currency	Distance	Direction
N/A	No records in buffer					

Tanks Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Major Easements

What Major Easements exist within the dataset buffer?

Note. Easements provided by LPI are not at the detail of local governments. They are limited to major easements such as Right of Carriageway, Electrical Lines (66kVa etc.), Easement to drain water & Significant subterranean pipelines (gas, water etc.).

Map Id	Easement Class	Easement Type	Easement Width	Distance	Direction
165885942	Primary	Right of way	Variable	365m	East
120112369	Primary	Undefined		398m	South West
120108889	Primary	Undefined		606m	South West
120121552	Primary	Undefined		647m	South East
176348730	Primary	Right of way	10m	773m	South
165632677	Primary	Right of way	8m & Var	839m	East
157903279	Primary	Right of way	6.035m	898m	South West
166299134	Primary	Right of way	Variable	961m	North

Easements Data Source: © Land and Property Information (2015)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

55 Settlement Road, Main Arm, NSW 2482

State Forest

What State Forest exist within the dataset buffer?

State Forest Number	State Forest Name	Distance	Direction
N/A	No records in buffer		

State Forest Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

National Parks and Wildlife Service Reserves

What NPWS Reserves exist within the dataset buffer?

Reserve Number	Reserve Type	Reserve Name	Gazetted Date	Distance	Direction
N/A	No records in buffer				

NPWS Data Source: © NSW Department of Finance, Services & Innovation (2018) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en **Elevation Contours (m AHD)**

Hydrogeology & Groundwater

55 Settlement Road, Main Arm, NSW 2482

Hydrogeology

Description of aquifers within the dataset buffer:

Description	Distance	Direction
Fractured or fissured, extensive aquifers of low to moderate productivity	0m	On-site

Hydrogeology Map of Australia : Commonwealth of Australia (Geoscience Australia)

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018

Temporary water restrictions relating to the Botany Sands aquifer within the dataset buffer:

Prohibition Area No.	Prohibition	Distance	Direction
N/A	No records in buffer		

Temporary Water Restriction (Botany Sands Groundwater Source) Order 2018 Data Source : NSW Department of Primary Industries

Groundwater Boreholes

Hydrogeology & Groundwater

55 Settlement Road, Main Arm, NSW 2482

Groundwater Boreholes

Boreholes within the dataset buffer:

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)		Salinity (mg/L)	SWL (m bgl)		Elev (AHD)	Dist	Dir
GW303 945	30BL180 384	Bore	Private	Domestic	Domestic		03/12/2002	27.00	27.00	220	10.0 0	1.010		86m	North West
GW307 045	30BL185 863	Bore	Private	Farming	Farming		22/01/2012	36.60	36.60	105	18.0 0	1.263		192m	North East
GW306 766	30BL180 808	Bore	Private	Domestic, Stock	Domestic, Stock		01/01/1992	36.50			35.6 0	0.200		233m	South West
GW306 231	30BL184 454	Bore	Private	Domestic	Domestic		20/09/2007	30.50	30.50	140	12.0 0	0.632		256m	North East
202100 12					UNK								66.80	387m	South West
GW301 324	30BL176 989	Bore		Domestic	Domestic			24.00	24.00	Good	6.00	0.505		463m	South West
GW037 039		(Unkn own)	Other Govt		General Use		01/01/1968	29.50	29.60					507m	East
GW053 777	30BL122 276, 30BL178 740	Excav ation	Private	Domestic, Irrigation, Stock	Irrigation		01/02/1983	3.00	3.00	0-500 ppm				562m	South
GW302 968	30BL179 165	Bore		Domestic, Stock	Domestic, Stock		10/12/2000	42.00	42.00	200	12.0 0	1.000		623m	East
GW061 667	30BL134 081	Excav ation	Private	Domestic, Stock	General Use			1.80						753m	South East
GW301 485	30BL178 039	Bore		Domestic	Domestic		07/05/1998	35.00	35.00		9.80	0.688		803m	South
GW068 138	30BL139 891	Bore	Private	Domestic, Stock			09/08/1989	19.50	19.50	Good	3.00	0.470		814m	South
GW303 617	30BL181 010	Bore		Domestic	Domestic		13/12/2002	30.50	30.50	120	9.00	5.052		818m	North East
GW067 125	30BL144 721			Domestic	Domestic		06/12/1991	36.00	36.00	Good	20.0 0	0.708	75.00	873m	North East
GW064 405	30BL136 481	Bore	Private	Domestic, Stock	Domestic, Stock		01/09/1987	25.00	25.00	Good				956m	South East
GW064 596	30BL136 554	Bore	Private	Domestic	Domestic		01/07/1987	27.00	27.00					962m	South East
202100 07					UNK								32.47	1082m	North
GW302 064	30BL178 195	Bore	Private	Domestic	Domestic, Irrigation									1192m	South West
GW300 548	30BL177 501	Bore		Domestic	Domestic		30/11/1996	31.00	31.00	Good	8.00	7.578		1275m	South West
GW307 025	30WA30 7417	Bore	Private	Domestic	Domestic		14/10/2011	18.00	18.00		7.50	0.320		1304m	North
GW068 148	30BL139 950	Bore	Private	Domestic			23/08/1989	12.00	12.00		4.00	0.300		1311m	North
GW071 397	30BL153 320	Bore		Domestic	Domestic		26/10/1993	41.00	41.00	Good	23.0 0	0.354		1315m	East
GW300 589	30BL177 400	Bore		Domestic	Domestic		21/11/1996	15.25	15.25		6.50	0.375		1357m	North
GW301 453	30BL177 764	Bore		Domestic	Domestic		04/08/1997	13.70	13.70		5.80	0.750		1418m	North
GW304 016	30BL181 170	Bore	Private	Domestic	Domestic		31/12/1996	15.00	15.00		10.0 0	5.500		1437m	South West
GW305 699	30BL180 737	Bore	Private	Stock	Domestic, Stock		08/10/2005	24.00	24.00			1.000		1454m	East
GW306 088	30BL184 037	Bore	Local Govt	Monitoring Bore	Monitoring Bore		03/10/2006	7.50	7.50		3.80			1457m	East

GW No.	Licence No	Work Type	Owner Type	Authorised Purpose	Intended Purpose	Name	Complete Date	Final Depth (m)	Drilled Depth (m)	Salinity (mg/L)	SWL (m bgl)	Yield (L/s)	Elev (AHD)	Dist	Dir
GW304 661	30BL179 971	Bore	Local Govt	Monitoring Bore	Monitoring Bore		25/02/2002	3.50	3.50					1475m	East
GW303 247	30BL179 958	Bore		Domestic, Stock	Domestic, Stock		23/04/2002	17.00	17.00					1520m	South West
GW303 446	30BL180 342	Bore		Domestic, Farming, Irrigation, Stock	Domestic, Farming, Irrigation, Stock		01/06/2002	48.80	48.80			2.970		1561m	South West
GW305 334	30BL183 922	Bore		Domestic, Farming, Irrigation	Domestic, Stock		13/09/2005	30.00	30.00	90	16.0 0	0.700		1573m	South West
GW306 086	30BL184 037	Bore	Local Govt	Monitoring Bore	Monitoring Bore		03/10/2006	7.00	7.00		4.00			1586m	South East
GW063 658	30BL135 210	Bore	Private	Domestic, Stock	Domestic, Stock		01/10/1986	4.00	4.00					1612m	South East
GW301 417	30BL177 217	Bore		Domestic, Stock	Domestic, Stock		05/02/1996	22.00	22.00	Good	6.00	0.300		1625m	South West
GW064 135	30BL136 176	Bore	Private	Domestic, Stock	Domestic, Stock		01/02/1987	14.00	17.00					1638m	South East
GW306 087	30BL184 037	Bore	Local Govt	Monitoring Bore	Monitoring Bore		03/10/2006	7.00	7.00		4.50			1681m	South East
GW304 662	30BL179 971	Bore	Local Govt	Monitoring Bore	Monitoring Bore		25/02/2004	5.80	5.80					1694m	South East
GW070 565	30BL150 663	Bore	Private	Domestic	Domestic		01/09/1992	22.00	22.00	Good	10.0 0	0.590	30.00	1696m	South East
GW307 060	30BL181 223	Bore	Private	Domestic	Domestic		04/07/2002	50.00	50.00	280	15.0 0	0.500		1712m	North
GW303 378	30BL179 759	Bore		Domestic	Domestic		01/06/2002	3.20			2.00	1.000		1717m	East
GW303 129	30BL179 667	Bore		Domestic	Domestic		21/11/2001	32.00	32.00					1833m	North
GW304 264	30BL181 500	Bore	Private	Domestic	Domestic		03/09/2003	26.00	26.00		15.0 0	0.531		1842m	North
GW071 390	30BL152 942	Bore		Domestic, Stock	Domestic, Stock		21/09/1993	55.00	55.00	Good	30.0 0	0.700		1857m	North
GW306 081	30BL184 036	Bore	Local Govt	Monitoring Bore	Monitoring Bore		04/10/2006	6.00	6.00		1.20			1872m	South East
GW301 459	30BL177 813	Bore		Domestic, Farming, Stock	Domestic, Farming, Stock		25/10/1997	25.90	25.90		4.00	2.250		1892m	North West
202100 10					UNK								37.23	1896m	North
GW304 767	30BL180 876	Bore		Domestic	Domestic		05/06/2004	54.00	54.00		2.50	2.500		1955m	North
202001					UNK								17.31	1960m	South East
GW306 080	30BL184 036	Bore	Local Govt	Monitoring Bore	Monitoring Bore		04/10/2006	7.50	7.50		4.50			1972m	South East

Borehole Data Source : NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corporation for all bores prefixed with GW. All other bores © Commonwealth of Australia (Bureau of Meteorology) 2015. Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Hydrogeology & Groundwater

55 Settlement Road, Main Arm, NSW 2482

Driller's Logs

Drill log data relevant to the boreholes within the dataset buffer:

Groundwater No	Drillers Log	Distance	Direction
GW303945	0.00m-0.30m GREY TOP SOIL 0.30m-3.00m BROWN CLAY 3.00m-5.50m BROWN CLAY WASHED GRAVEL TO 50MM 5.50m-10.00m YELLOW TO PINK WEATHERED SHALE 10.00m-14.00m BASALT 14.00m-21.00m GREY SCHIST 21.00m-26.00m BROKEN GREY SCHIST 26.00m-27.00m GREY SCHIST	86m	North West
GW307045	0.00m-0.60m SOIL AND BROWN FILL 0.60m-2.00m CLAY RED 2.00m-8.00m CLAY LT BROWN AND MOTTLED 8.00m-10.00m SHALE 10.00m-22.00m BASALT 22.00m-27.00m BASALT CRACKY 27.00m-32.00m BASALT 32.00m-36.00m BASALT BROKEN 36.00m-36.60m BASALT	192m	North East
GW306231	0.00m-0.30m Topsoil, black 0.30m-7.00m Weathered Shale, yellow 7.00m-17.00m Shale, grey 17.00m-21.00m Shale, grey, reef quartz, water bearing 21.00m-26.00m Shale, grey 26.00m-30.00m Basalt, cracky, water bearing 30.00m-30.50m Basalt	256m	North East
GW301324	0.00m-0.30m BLACK TOPSOIL 0.30m-6.00m BROWN CLAY BASALT FLOATERS 6.00m-19.00m BASALT 19.00m-24.00m CRACKY BASALT	463m	South West
GW037039	0.00m-0.60m Soil Black 0.60m-10.66m Clay Yellow 10.66m-12.80m Clay Boulder 12.80m-15.84m Clay 12.80m-15.84m Gravel Loose Water Supply 15.84m-19.81m Clay Yellow 19.81m-20.72m Clay Gravel Water Supply 20.72m-25.29m Clay Yellow 25.29m-27.12m Gravel Water Supply 27.12m-28.95m Clay Yellow 28.95m-29.56m Blue Metal Gravel	507m	East
GW053777	0.00m-1.00m Black 1.00m-3.00m Gravel Water Bearing	562m	South
GW302968	0.00m-2.00m Red Topsoil 2.00m-6.00m Red Clay 6.00m-9.00m Brown Clay 9.00m-12.00m Brown Shale 12.00m-27.00m Basalt 27.00m-31.00m Cracky Basalt 31.00m-39.00m Cracky Basalt 35.00m-39.00m Cracky Basalt 39.00m-42.00m Basalt	623m	East
GW301485	0.00m-0.90m SOIL 0.90m-19.80m DECOMPOSED SHALE 19.80m-35.00m SHALE	803m	South
GW068138	0.00m-1.00m Top Soil 1.00m-4.00m Brown Clay 4.00m-16.50m Yellow Clay 16.50m-19.50m	814m	South
GW303617	0.00m-0.30m BROWN TOP SOIL 0.30m-3.00m BROWN CLAY 3.00m-7.00m BROWN CLAY 7.00m-25.50m GREY SHALE 25.50m-29.50m FRACTURED GREY SHALE 29.50m-30.50m GREY SHALE	818m	North East

Groundwater No	Drillers Log	Distance	Direction
GW067125	0.00m-1.00m TOPSOIL 1.00m-3.00m CLAY 3.00m-30.00m DECOMPOSED ROCK 30.00m-33.00m SHALE 33.00m-36.00m BASALT	873m	North East
GW064405	0.00m-6.00m Clay 6.00m-11.00m Gravel Clay 11.00m-17.00m Gravel Boulder 17.00m-21.00m Shale Water Supply 21.00m-25.00m Shale 21.00m-25.00m Coal Shale	956m	South East
GW064596	0.00m-8.00m Clay 8.00m-11.00m Shale Soft 11.00m-24.00m Shale Water Supply 24.00m-26.00m Shale Medium Hard 26.00m-27.00m Basalt	962m	South East
GW300548	0.00m-12.00m Granite sandy clay 12.00m-15.00m Volcanic shale 15.00m-26.00m Basalt 26.00m-31.00m Broken shale	1275m	South West
GW307025	0.00m-3.00m TOPSOIL RED 3.00m-4.00m ROADBASE 4.00m-6.00m CLAY RED 6.00m-10.00m CLAY WHITE 10.00m-12.00m BASALT IN CLAY 12.00m-14.00m BASALT FRACTURED 14.00m-15.00m CLAY 15.00m-18.00m LARGE ROCKS AND BOULDERS	1304m	North
GW068148	0.00m-3.00m 3.00m-10.00m Claybound Gravel 10.00m-12.00m	1311m	North
GW071397	0.00m-1.00m TOP SOIL 1.00m-3.00m CLAY 3.00m-36.00m DECOMPOSED ROCK 36.00m-38.00m SHALE 38.00m-41.00m DECOMPOSED ROCK	1315m	East
GW300589	0.00m-0.60m Soil 0.60m-5.20m Clay 5.20m-15.25m Clay & gravel	1357m	North
GW301453	0.00m-0.90m soil 0.90m-3.00m clay 3.00m-4.50m dry gravel 4.50m-6.70m clay 6.70m-13.70m gravel	1418m	North
GW305699	0.00m-6.00m topsoil clay 6.00m-10.00m shale 10.00m-24.00m basalt	1454m	East
GW306088	0.00m-0.60m Topsoil, Clay, high plasticity, brown 0.60m-2.00m Gravel, fine-coarse, brown & grey 2.00m-3.80m Gravel, clayey, fine-coarse, grey 3.80m-7.50m Sandy Clay, brown, fine plasticity, fine-coarse	1457m	East
GW304661	0.00m-0.50m LOAM 0.50m-1.50m BROWN CLAY 1.50m-3.50m GRAVELLY CLAY	1475m	East
GW303247	0.00m-6.00m Hard & Soft with Boulders & Gravel with soil inbetween 6.00m-14.00m Gravel/Boulders lost circulation zone 14.00m-16.00m Soft seemed like fine Gravel & Soil not much circulation 16.00m-17.00m Hard Boulders	1520m	South West
GW303446	0.00m-4.00m boulders broken rock 4.00m-18.00m weathered unstable soil decomposed basalt 18.00m-26.00m firm stable weathered basalt light grey colour 26.00m-28.00m soft fresh basalt 28.00m-30.00m firm fresh basalt 30.00m-31.00m soft fresh basalt 31.00m-42.00m soft medium basalt light coloured grey 42.00m-47.00m soft honey comb basalt major water bearing 47.00m-48.80m fresh hard basalt dark colour	1561m	South West
GW305334	0.00m-6.00m fractured rock 6.00m-30.00m basalt	1573m	South West
GW306086	0.00m-0.30m Topsoil, Clay, fine, high plasticity 0.30m-7.00m Clay, high plasticity	1586m	South East
GW063658	0.00m-1.00m Clay 1.00m-2.00m Gravel Clay 2.00m-4.00m Gravel Water Supply	1612m	South East

Groundwater No	Drillers Log	Distance	Direction
GW301417	0.00m-7.00m TOPSOIL 7.00m-12.00m GREY SHALE 12.00m-15.00m RED SHALE 15.00m-18.00m BROWN SHALE 18.00m-22.00m BASALT	1625m	South West
GW064135	0.00m-4.00m Topsoil Clay 4.00m-11.00m Gravel Soil 11.00m-17.00m Shale Water Supply 11.00m-17.00m Layers	1638m	South East
GW306087	0.00m-0.30m Topsoil, Clay with some rootlets, brown 0.30m-3.00m Silty Clay, brown & grey 3.00m-7.00m Silty Clay, high plasticity, red & grey	1681m	South East
GW304662	0.00m-0.50m LOAM 0.50m-5.80m BROWN CLAY	1694m	South East
GW070565	0.00m-1.00m Topsoil 1.00m-2.00m Clay 2.00m-16.00m Rock - decomposed 16.00m-22.00m Basalt - honeycomb	1696m	South East
GW303129	0.00m-3.00m Clay 3.00m-26.00m Decomposed Rock 26.00m-28.00m Broken Basalt 28.00m-32.00m Basalt	1833m	North
GW304264	0.00m-1.00m TOP SOIL 1.00m-2.00m CLAY 2.00m-10.00m DECOMPOSED ROCK 10.00m-22.00m HARD BROWN SHALE 22.00m-24.00m SOFT SHALE 24.00m-26.00m BASALT	1842m	North
GW071390	0.00m-14.00m CLAY 14.00m-32.00m SHALE 32.00m-44.00m HARD SHALE 44.00m-46.00m BROKEN ROCK 46.00m-50.00m BROKEN ROCK 50.00m-53.00m BROKEN ROCK 53.00m-55.00m BASALT	1857m	North
GW306081	0.00m-0.30m Topsoil, Silty Clay, HP, trace of rootlets 0.30m-2.40m Silty Clay, high plasticity, brown mottled orange 2.40m-3.50m Sandy Clay, high plasticity (HP), brown 3.50m-4.50m Sand, medium-coarse, brown 4.50m-6.00m Clay, HP, grey	1872m	South East
GW301459	0.00m-1.80m soil and decomposed shale 1.80m-4.20m clay 4.20m-9.10m decomposed shale 9.10m-25.90m shale	1892m	North West
GW304767	0.00m-12.00m dec shale and clay 12.00m-44.00m grey guartz shale 44.00m-54.00m smokey quartz	1955m	North
GW306080	0.00m-0.40m Topsoil, Silty Clay, high plasticity, brown 0.40m-4.50m Silty Clay, high plasticity, brown mottle orange 4.50m-6.00m Sand, medium-coarse, brown with some HP Clay 6.00m-7.50m Sandy Clay, high plasticity, pale brown	1972m	South East

Drill Log Data Source: NSW Department of Primary Industries - Office of Water / Water Administration Ministerial Corp Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en Geology

Geology

55 Settlement Road, Main Arm, NSW 2482

Geological Units 1:250,000

What are the Geological Units within the dataset buffer?

Symbol	Description	Unit Name	Group	Sub Group	Age	Dist	Dir
Cnx	Feldspathic & lithic meta- arenite, metaSiltstone, chert, jasper, basic meta- volcanics, conglomerate. They are a thick sequence of proximal to distal turbidites with structurally intercalated or stratigraphically underlying chert, jasper & metabasalt	Neranleigh-Fernvale beds				0m	On-site
TIIb	Basalt	Lismore Basalt	Lamington Volcanics		Cainozoic	0m	On-site
Qa	Undifferentiated alluvial deposits; sand, silt, clay and gravel; some residual and colluvial deposits. Includes some channel, levee, lacustrine, flooplain and swamp deposits. May include some higher level Tertiary terraces				Cainozoic	0m	On-site

Geological Structures 1:250,000

What are the Geological Structures within the dataset buffer?

Feature	Name	Description	Map Sheet	Distance	Direction
N/A	No records in buffer				

Geological Data Source : NSW Department of Industry, Resources & Energy

© State of New South Wales through the NSW Department of Industry, Resources & Energy

Naturally Occurring Asbestos Potential

55 Settlement Road, Main Arm, NSW 2482

Naturally Occurring Asbestos Potential

Naturally Occurring Asbestos Potential within the dataset buffer:

Potential	Sym	Strat Name	Group	Formation	Scale	Min Age	Max Age	Rock Type	Dom Lith	Description	Dist	Dir
No records in buffer												

Naturally Occurring Asbestos Potential Data Source: © State of New South Wales through NSW Department of Industry, Resources & Energy

Atlas of Australian Soils

Soils

55 Settlement Road, Main Arm, NSW 2482

Atlas of Australian Soils

Soil mapping units and Australian Soil Classification orders within the dataset buffer:

Map Unit Code	Soil Order	Map Unit Description	Distance	Direction
Mf5	Dermosol	Hilly to steep hilly with narrow valleys along the streams: moderate to steep slopes of yellow leached friable earths (Gn3.74) and (Gn3.84) with red friable earths (Gn3.14) often codominant. Associated are: shallow soils such as (Um4.1 and Um4.2), and (Uc4.1) on hill crests and upper slopes; (Dr2.21), (Dy3.21), and related soils on the drier more exposed mid to lower slopes; and some areas of (Gn2.14) soils and minor occurrences of other undescribed soils. The whole area is traversed by narrow valleys or variable soils, largely undescribed but including (Um6.11) on terraces and (Dg4) and (Dy5) on flood-plains.	Om	On-site
Mg27	Ferrosol	Mountainousrugged plateau remnants and mountain peaks at moderate to high elevation (> 1000 ft): soils almost unknown, available data suggest a complex soil population with (i) red and brown friable porous earths (Gn4.11) and (Gn4.31 and Gn4.34) on moderate slopes and broader ridge tops; (ii) dark friable porous earths (Gn4.41 and Gn4.42) on the steeper slopes and narrow ridge tops, (iii) shallow soils such as (Uc4), (Um4), and (Um6) on steep slopes with rock outcrops and bare rock walls; and (iv) a variety of other soils including (Dr4), (Dy4), and (Gn3.2) on moderate slopes. (iii) and (iv) are more common on the less basic rock types.	713m	South West

Atlas of Australian Soils Data Source: CSIRO

Creative Commons 4.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/au/deed.en

Soil Landscapes of Central and Eastern NSW

Soils

55 Settlement Road, Main Arm, NSW 2482

Soil Landscapes of Central and Eastern NSW

Soil Landscapes of Central and Eastern NSW within the dataset buffer:

Soil Code	Name	Distance	Direction
<u>9540bu</u>	Burringbar	0m	On-site
<u>9540mb</u>	Mount Burrell	0m	On-site
<u>9540bi</u>	Billinudgel	17m	South
<u>9540mu</u>	Mullumbimby	246m	East
<u>9540nra</u>	Nimbin Rocks variant a	881m	West
<u>9540roa</u>	Rosebank variant a	937m	South

Soil Landscapes of Central and Eastern NSW: NSW Department of Planning, Industry and Environment

 $Creative\ Commons\ 4.0\ \ C\ common wealth\ of\ Australia\ http://creativecommons.org/licenses/by/4.0/au/deed.en$

Acid Sulfate Soils

55 Settlement Road, Main Arm, NSW 2482

Environmental Planning Instrument - Acid Sulfate Soils

What is the on-site Acid Sulfate Soil Plan Class that presents the largest environmental risk?

Soil Class	Description	EPI Name
N/A		

If the on-site Soil Class is 5, what other soil classes exist within 500m?

Soil Class	Description	EPI Name	Distance	Direction
N/A				

NSW Crown Copyright - Planning and Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Atlas of Australian Acid Sulfate Soils

Acid Sulfate Soils

55 Settlement Road, Main Arm, NSW 2482

Atlas of Australian Acid Sulfate Soils

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

Class	Description	Distance	Direction
В	Low Probability of occurrence. 6-70% chance of occurrence.	0m	On-site
С	Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas.	715m	South West

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Dryland Salinity

55 Settlement Road, Main Arm, NSW 2482

Dryland Salinity - National Assessment

Is there Dryland Salinity - National Assessment data onsite?

No

Is there Dryland Salinity - National Assessment data within the dataset buffer?

No

What Dryland Salinity assessments are given?

Assessment 2000	Assessment 2020	Assessment 2050	Distance	Direction
N/A	N/A	N/A		

Dryland Salinity Data Source : National Land and Water Resources Audit

The Commonwealth and all suppliers of source data used to derive the maps of "Australia, Forecast Areas Containing Land of High Hazard or Risk of Dryland Salinity from 2000 to 2050" do not warrant the accuracy or completeness of information in this product. Any person using or relying upon such information does so on the basis that the Commonwealth and data suppliers shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information. Any persons using this information do so at their own risk.

In many cases where a high risk is indicated, less than 100% of the area will have a high hazard or risk.

Mining

55 Settlement Road, Main Arm, NSW 2482

Mining Subsidence Districts

Mining Subsidence Districts within the dataset buffer:

District	Distance	Direction
There are no Mining Subsidence Districts within the report buffer		

Mining Subsidence District Data Source: © Land and Property Information (2016) Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Mining & Exploration Titles

Mining

55 Settlement Road, Main Arm, NSW 2482

Current Mining & Exploration Titles

Current Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Grant Date	Expiry Date	Last Renewed	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer								

Current Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

Current Mining & Exploration Title Applications

Current Mining & Exploration Title Applications within the dataset buffer:

Application Ref	Applicant	Application Date	Operation	Resource	Minerals	Dist	Dir
N/A	No records in buffer						

Current Mining & Exploration Title Applications Data Source: © State of New South Wales through NSW Department of Industry

Mining

55 Settlement Road, Main Arm, NSW 2482

Historical Mining & Exploration Titles

Historical Mining & Exploration Titles within the dataset buffer:

Title Ref	Holder	Start Date	End Date	Resource	Minerals	Dist	Dir
PEL0429	SUNOCO INC	26/10/1999	13/11/2002	PETROLEUM	Petroleum	0m	On-site
PEL0062	MID-EASTERN OIL			PETROLEUM	Petroleum	0m	On-site
PEL0087	NATIONAL OIL HOLDINGS LTD, ALLIANCE OIL DEVELOPMENT AUSTRALIA NL			PETROLEUM	Petroleum	0m	On-site
PEL429	SUNOCO INC.			MINERALS		0m	On-site
PEL0167	BRIDGE OIL			PETROLEUM	Petroleum	0m	On-site
PEL0257	OIL AND MINERALS QUEST NL	3/12/1980		PETROLEUM	Petroleum	0m	On-site
PEL0271	BASE RESOURCES LTD, EDGEWORTH MINERALS LTD	10/05/1984	9/05/1986	PETROLEUM	Petroleum	0m	On-site
PEL0282	AGL PETROLEUM OPERATIONS PTY LTD	16/03/1992	4/11/1992	PETROLEUM	Petroleum	0m	On-site
PEL0445	DART ENERGY (BRUXNER) PTY LTD	19/04/2004	19/10/2015	PETROLEUM	Petroleum	0m	On-site
EL0461	PLANET METALS LIMITED	01 Jun 1971	01 Dec 1972	MINERALS	Ti Fe Th Heavy mineral sands Zircon	0m	On-site
PEL445	DART ENERGY (BRUXNER) PTY LTD			MINERALS		0m	On-site
EL7105	BOOTH, James,NEA KAMENI PTY LTD	05 Mar 2008	05 Mar 2010	MINERALS	Diamond	827m	South

Historical Mining & Exploration Titles Data Source: © State of New South Wales through NSW Department of Industry

State Environmental Planning Policy

55 Settlement Road, Main Arm, NSW 2482

State Significant Precincts

What SEPP State Significant Precincts exist within the dataset buffer?

Map Id	Precinct	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
N/A	No records in buffer							

State Environment Planning Policy Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/ **EPI Planning Zones**

Environmental Planning Instrument

55 Settlement Road, Main Arm, NSW 2482

Land Zoning

What EPI Land Zones exist within the dataset buffer?

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
RU2	Rural Landscape		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	0m	On-site
E2	Environmental Conservation		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	0m	On-site
DM	Deferred Matter		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	0m	On-site
DM	Deferred Matter		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	0m	South West
DM	Deferred Matter		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	0m	North West
RU1	Primary Production		Byron Local Environmental Plan 2014	30/05/2014	21/07/2014	14/05/2021		9m	North
DM	Deferred Matter		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	48m	North
RU2	Rural Landscape		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	133m	North West
E2	Environmental Conservation		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	196m	North
RU2	Rural Landscape		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	263m	North East
RU1	Primary Production		Byron Local Environmental Plan 2014	30/05/2014	21/07/2014	14/05/2021		337m	North East
DM	Deferred Matter		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	384m	North West
DM	Deferred Matter		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	404m	North East
DM	Deferred Matter		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	416m	North West
RU1	Primary Production		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	432m	South East
DM	Deferred Matter		Byron Local Environmental Plan 2014	30/05/2014	21/07/2014	14/05/2021		531m	South
RU2	Rural Landscape		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	540m	North East
RU1	Primary Production		Byron Local Environmental Plan 2014	30/05/2014	21/07/2014	14/05/2021		604m	North
E2	Environmental Conservation		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	645m	South West
DM	Deferred Matter		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	653m	South West
RU2	Rural Landscape		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	678m	South West
RU2	Rural Landscape		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	681m	South West
E2	Environmental Conservation		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	690m	South
E2	Environmental Conservation		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	695m	South
RU1	Primary Production		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	713m	South West
RU2	Rural Landscape		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	793m	South West
DM	Deferred Matter		Byron Local Environmental Plan 2014	30/05/2014	21/07/2014	14/05/2021		811m	South
E3	Environmental Management		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	812m	South West

Zone	Description	Purpose	EPI Name	Published Date	Commenced Date	Currency Date	Amendment	Distance	Direction
E2	Environmental Conservation		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	813m	West
E2	Environmental Conservation		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	822m	East
E3	Environmental Management		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	870m	South
E2	Environmental Conservation		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	892m	South
E3	Environmental Management		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	892m	South
E3	Environmental Management		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	913m	South
RU2	Rural Landscape		Byron Local Environmental Plan 2014	30/05/2014	21/07/2014	14/05/2021		953m	South West
RU1	Primary Production		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	958m	South West
DM	Deferred Matter		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	973m	South
E3	Environmental Management		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	987m	South
E2	Environmental Conservation		Byron Local Environmental Plan 2014	12/02/2021	12/02/2021	14/05/2021	Amendment No 23	988m	South West
DM	Deferred Matter		Byron Local Environmental Plan 2014	30/05/2014	21/07/2014	14/05/2021		991m	South East

Environmental Planning Instrument Data Source: NSW Crown Copyright - Planning & Environment Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Heritage

55 Settlement Road, Main Arm, NSW 2482

Commonwealth Heritage List

What are the Commonwealth Heritage List Items located within the dataset buffer?

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

National Heritage List

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

Place Id	Name	Address	Place File No	Class	Status	Register Date	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

State Heritage Register - Curtilages

What are the State Heritage Register Items located within the dataset buffer?

Map Id	Name	Address	LGA	Listing Date	Listing No	Plan No	Distance	Direction
N/A	No records in buffer							

Heritage Data Source: NSW Crown Copyright - Office of Environment & Heritage Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Environmental Planning Instrument - Heritage

What are the EPI Heritage Items located within the dataset buffer?

Map Id	Name	Classification	Significance	EPI Name	Published Date	Commenced Date	Currency Date	Distance	Direction
N/A	No records in buffer								

Heritage Data Source: NSW Crown Copyright - Planning & Environment

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

Natural Hazards - Bush Fire Prone Land

Natural Hazards

55 Settlement Road, Main Arm, NSW 2482

Bush Fire Prone Land

What are the nearest Bush Fire Prone Land Categories that exist within the dataset buffer?

Bush Fire Prone Land Category	Distance	Direction
Vegetation Category 1	0m	On-site
Vegetation Buffer	0m	On-site
Vegetation Category 2	495m	South West

NSW Bush Fire Prone Land - © NSW Rural Fire Service under Creative Commons 4.0 International Licence

Ecological Constraints - Vegetation & Ramsar Wetlands

Ecological Constraints

55 Settlement Road, Main Arm, NSW 2482

Vegetation - Eastern Bushland Database (North Region)

What Vegetation exists within the dataset buffer?

Veg Code	Veg Desc	NVISCode	NVISDesc	Distance	Direction
2	moist eucalypt forest	8	Moist forest system	0m	On-site
x	disturbed forest woodland	23	Disturbed bushland	0m	On-site
ХА	disturbed remnant [mod. reliability]	23	Disturbed bushland	820m	South West

Vegetation Eastern Bushland Database Data Source: NSW Office of Environment and Heritage Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ramsar Wetlands

What Ramsar Wetland areas exist within the dataset buffer?

Map Id	Ramsar Name	Wetland Name	Designation Date	Source	Distance	Direction
N/A	No records in buffer					

Ramsar Wetlands Data Source: © Commonwealth of Australia - Department of Agriculture, Water and the Environment
Ecological Constraints - Groundwater Dependent Ecosystems Atlas

55 Settlement Road, Main Arm, NSW 2482

Ecological Constraints

55 Settlement Road, Main Arm, NSW 2482

Groundwater Dependent Ecosystems Atlas

Туре	GDE Potential	Geomorphology	Ecosystem Type	Aquifer Geology	Distance	Direction
Terrestrial	Low potential GDE - from regional studies	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	Vegetation		Om	On-site
Terrestrial	Low potential GDE - from regional studies	Dissected plateau margin on granite and metamorphic rocks.	Vegetation		80m	North
Aquatic	High potential GDE - from national assessment	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	River		323m	East
Terrestrial	High potential GDE - from regional studies	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	Vegetation		504m	North West
Terrestrial	Moderate potential GDE - from regional studies	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	Vegetation		521m	North West

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints - Inflow Dependent Ecosystems Likelihood

55 Settlement Road, Main Arm, NSW 2482

Ecological Constraints

55 Settlement Road, Main Arm, NSW 2482

Inflow Dependent Ecosystems Likelihood

		Geomorphology	Ecosystem Type	Aquiler Geology	Distance	Direction
Terrestrial	3	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	Vegetation		0m	On-site
Terrestrial	1	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	Vegetation		0m	On-site
Terrestrial	5	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	Vegetation		46m	North
Terrestrial	7	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	Vegetation		60m	South
Terrestrial	10	Dissected plateau margin on granite and metamorphic rocks.	Vegetation		80m	North
Terrestrial	4	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	Vegetation		105m	North
Terrestrial	9	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	Vegetation		226m	North West
Terrestrial	8	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	Vegetation		232m	South
Terrestrial	6	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	Vegetation		269m	North
Terrestrial	8	Dissected plateau margin on granite and metamorphic rocks.	Vegetation		308m	South West
Aquatic	1	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	River		323m	East
Aquatic	4	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	River		429m	North East
Terrestrial	2	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	Vegetation		488m	North West
Terrestrial	10	Baslatic plateau terminating southeast in dissected volcanic pile (Mount Warning).	Vegetation		559m	South West
Terrestrial	7	Dissected plateau margin on granite and metamorphic rocks.	Vegetation		607m	South West
Terrestrial	5	Dissected plateau margin on granite and metamorphic rocks.	Vegetation		854m	West

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

Ecological Constraints

55 Settlement Road, Main Arm, NSW 2482

NSW BioNet Atlas

Species on the NSW BioNet Atlas that have a NSW or federal conservation status, a NSW sensitivity status, or are listed under a migratory species agreement, and are within 10km of the site?

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Amphibia	Assa darlingtoni	Pouched Frog	Vulnerable	Not Sensitive	Not Listed	
Animalia	Amphibia	Crinia tinnula	Wallum Froglet	Vulnerable	Not Sensitive	Not Listed	
Animalia	Amphibia	Mixophyes fleayi	Fleay's Barred Frog	Endangered	Category 2	Endangered	
Animalia	Amphibia	Philoria loveridgei	Loveridge's Frog	Endangered	Category 2	Not Listed	
Animalia	Aves	Amaurornis moluccana	Pale-vented Bush-hen	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anseranas semipalmata	Magpie Goose	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Anthochaera phrygia	Regent Honeyeater	Critically Endangered	Not Sensitive	Critically Endangered	
Animalia	Aves	Apus pacificus	Fork-tailed Swift	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Atrichornis rufescens	Rufous Scrub-bird	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Botaurus poiciloptilus	Australasian Bittern	Endangered	Not Sensitive	Endangered	
Animalia	Aves	Burhinus grallarius	Bush Stone- curlew	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Callocephalon fimbriatum	Gang-gang Cockatoo	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Calyptorhynchus lathami	Glossy Black- Cockatoo	Vulnerable	Category 2	Not Listed	
Animalia	Aves	Carterornis leucotis	White-eared Monarch	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Chthonicola sagittata	Speckled Warbler	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Circus assimilis	Spotted Harrier	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Climacteris picumnus victoriae	Brown Treecreeper (eastern subspecies)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Coracina lineata	Barred Cuckoo- shrike	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Cuculus optatus	Oriental Cuckoo	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA JAMBA
Animalia	Aves	Cyclopsitta diophthalma coxeni	Coxen's Fig- Parrot	Critically Endangered	Category 2	Endangered	
Animalia	Aves	Daphoenositta chrysoptera	Varied Sittella	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Dasyornis brachypterus	Eastern Bristlebird	Endangered	Category 2	Endangered	
Animalia	Aves	Ephippiorhynchus asiaticus	Black-necked Stork	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Erythrotriorchis radiatus	Red Goshawk	Critically Endangered	Category 2	Vulnerable	
Animalia	Aves	Falco subniger	Black Falcon	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Gallinago hardwickii	Latham's Snipe	Not Listed	Not Sensitive	Not Listed	ROKAMBA;JAMBA
Animalia	Aves	Glossopsitta pusilla	Little Lorikeet	Vulnerable	Not Sensitive	Not Listed	
		1 · · · ·					

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Aves	Grus rubicunda	Brolga	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Haematopus Iongirostris	Pied Oystercatcher	Endangered	Not Sensitive	Not Listed	
Animalia	Aves	Haliaeetus leucogaster	White-bellied Sea-Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hieraaetus morphnoides	Little Eagle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Hirundapus caudacutus	White-throated Needletail	Not Listed	Not Sensitive	Vulnerable	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hirundo rustica	Barn Swallow	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Hydroprogne caspia	Caspian Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Irediparra gallinacea	Comb-crested Jacana	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ixobrychus flavicollis	Black Bittern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Lathamus discolor	Swift Parrot	Endangered	Category 3	Critically Endangered	
Animalia	Aves	Lichenostomus fasciogularis	Mangrove Honeyeater	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Lophoictinia isura	Square-tailed Kite	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Melanodryas cucullata cucullata	Hooded Robin (south-eastern form)	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Menura alberti	Albert's Lyrebird	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ninox strenua	Powerful Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Numenius phaeopus	Whimbrel	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Onychoprion fuscata	Sooty Tern	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pachycephala olivacea	Olive Whistler	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pandion cristatus	Eastern Osprey	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Petroica boodang	Scarlet Robin	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Pluvialis fulva	Pacific Golden Plover	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Podargus ocellatus	Marbled Frogmouth	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus magnificus	Wompoo Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus regina	Rose-crowned Fruit-Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Ptilinopus superbus	Superb Fruit- Dove	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Sterna hirundo	Common Tern	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Stictonetta naevosa	Freckled Duck	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Strepera graculina crissalis	Pied Currawong (Lord Howe Is. subsp.)	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Aves	Thalasseus bergii	Crested Tern	Not Listed	Not Sensitive	Not Listed	JAMBA
Animalia	Aves	Todiramphus chloris	Collared Kingfisher	Vulnerable	Not Sensitive	Not Listed	
Animalia	Aves	Tringa nebularia	Common Greenshank	Not Listed	Not Sensitive	Not Listed	ROKAMBA;CAMBA; JAMBA
Animalia	Aves	Tyto novaehollandiae	Masked Owl	Vulnerable	Category 3	Not Listed	
Animalia	Aves	Tyto tenebricosa	Sooty Owl	Vulnerable	Category 3	Not Listed	
Animalia	Gastropoda	Thersites mitchellae	Mitchell's Rainforest Snail	Endangered	Not Sensitive	Critically Endangered	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Insecta	Argynnis hyperbius	Laced Fritillary	Endangered	Not Sensitive	Critically Endangered	
Animalia	Insecta	Phyllodes imperialis southern subspecies	Southern Pink Underwing Moth	Endangered	Not Sensitive	Endangered	
Animalia	Mammalia	Aepyprymnus rufescens	Rufous Bettong	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Cercartetus nanus	Eastern Pygmy- possum	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Chalinolobus dwyeri	Large-eared Pied Bat	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Dasyurus maculatus	Spotted-tailed Quoll	Vulnerable	Not Sensitive	Endangered	
Animalia	Mammalia	Falsistrellus tasmaniensis	Eastern False Pipistrelle	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Kerivoula papuensis	Golden-tipped Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Macropus dorsalis	Black-striped Wallaby	Endangered	Not Sensitive	Not Listed	
Animalia	Mammalia	Macropus parma	Parma Wallaby	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Micronomus norfolkensis	Eastern Coastal Free-tailed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus australis	Little Bent-winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Miniopterus orianae oceanensis	Large Bent- winged Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Myotis macropus	Southern Myotis	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Nyctimene robinsoni	Eastern Tube- nosed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Nyctophilus bifax	Eastern Long- eared Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petauroides volans	Greater Glider	Not Listed	Not Sensitive	Vulnerable	
Animalia	Mammalia	Petaurus australis	Yellow-bellied Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Petaurus norfolcensis	Squirrel Glider	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascogale tapoatafa	Brush-tailed Phascogale	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Phascolarctos cinereus	Koala	Endangered Population, Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Phascolarctos cinereus	Koala	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Planigale maculata	Common Planigale	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Potorous tridactylus	Long-nosed Potoroo	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Potorous tridactylus	Long-nosed Potoroo	Endangered Population, Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pseudomys novaehollandiae	New Holland Mouse	Not Listed	Not Sensitive	Vulnerable	
Animalia	Mammalia	Pteropus poliocephalus	Grey-headed Flying-fox	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Mammalia	Saccolaimus flaviventris	Yellow-bellied Sheathtail-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Scoteanax rueppellii	Greater Broad- nosed Bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Syconycteris australis	Common Blossom-bat	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Thylogale stigmatica	Red-legged Pademelon	Vulnerable	Not Sensitive	Not Listed	
Animalia	Mammalia	Vespadelus troughtoni	Eastern Cave Bat	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Animalia	Reptilia	Chelonia mydas	Green Turtle	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Coeranoscincus reticulatus	Three-toed Snake-tooth Skink	Vulnerable	Not Sensitive	Vulnerable	
Animalia	Reptilia	Hoplocephalus stephensii	Stephens' Banded Snake	Vulnerable	Not Sensitive	Not Listed	
Animalia	Reptilia	Pseudonaja modesta	Ringed Brown Snake	Endangered	Not Sensitive	Not Listed	
Animalia	Reptilia	Suta flagellum	Little Whip Snake	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Acacia bakeri	Marblewood	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Acalypha eremorum	Acalypha	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Acronychia littoralis	Scented Acronychia	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Archidendron hendersonii	White Lace Flower	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Arthraxon hispidus	Hairy Jointgrass	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Backhousia subargentea	Giant Ironwood	Endangered	Category 3	Not Listed	
Plantae	Flora	Belvisia mucronata	Needle-leaf Fern	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Bosistoa transversa	Yellow Satinheart	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Cassia marksiana		Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Corokia whiteana	Corokia	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Cryptocarya foetida	Stinking Cryptocarya	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Cynanchum elegans	White-flowered Wax Plant	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Cyperus rupicola	Cliff Sedge	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Cyperus semifertilis	Missionary Nutgrass	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Davidsonia jerseyana	Davidson's Plum	Endangered	Category 2	Endangered	
Plantae	Flora	Davidsonia johnsonii	Smooth Davidson's Plum	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Dendrocnide moroides	Gympie Stinger	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Desmodium acanthocladum	Thorny Pea	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Diospyros mabacea	Red-fruited Ebony	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Diospyros yandina	Shiny-leaved Ebony	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Diploglottis campbellii	Small-leaved Tamarind	Endangered	Category 2	Endangered	
Plantae	Flora	Doryanthes	Giant Spear Lily	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Elaeocarpus sedentarius	Minyon Quandong	Endangered	Category 3	Endangered	
Plantae	Flora	Elaeocarpus williamsianus	Hairy Quandong	Endangered	Category 3	Endangered	
Plantae	Flora	Endiandra floydii	Crystal Creek Walnut	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Endiandra hayesii	Rusty Rose Walnut	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Endiandra muelleri subsp. bracteata	Green-leaved Rose Walnut	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Floydia praealta	Ball Nut	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Fontainea australis	Southern Fontainea	Vulnerable	Not Sensitive	Vulnerable	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Plantae	Flora	Gossia fragrantissima	Sweet Myrtle	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Grammitis stenophylla	Narrow-leaf Finger Fern	Endangered	Category 3	Not Listed	
Plantae	Flora	Grevillea hilliana	White Yiel Yiel	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Harnieria hygrophiloides		Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Hibbertia hexandra	Tree Guinea Flower	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Hicksbeachia pinnatifolia	Red Boppel Nut	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Isoglossa eranthemoides	Isoglossa	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Knoxia sumatrensis		Presumed Extinct	Not Sensitive	Not Listed	
Plantae	Flora	Lepiderema pulchella	Fine-leaved Tuckeroo	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Lindsaea brachypoda	Short-footed Screw Fern	Endangered	Category 3	Not Listed	
Plantae	Flora	Macadamia integrifolia	Macadamia Nut	Not Listed	Not Sensitive	Vulnerable	
Plantae	Flora	Macadamia tetraphylla	Rough-shelled Bush Nut	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Marsdenia longiloba	Slender Marsdenia	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Niemeyera whitei	Rusty Plum, Plum Boxwood	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Oberonia titania	Red-flowered King of the Fairies	Vulnerable	Category 2	Not Listed	
Plantae	Flora	Ochrosia moorei	Southern Ochrosia	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Owenia cepiodora	Onion Cedar	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Peristeranthus hillii	Brown Fairy-chain Orchid	Vulnerable	Category 2	Not Listed	
Plantae	Flora	Phaius australis	Southern Swamp Orchid	Endangered	Category 2	Endangered	
Plantae	Flora	Phyllanthus microcladus	Brush Sauropus	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Plectranthus nitidus	Nightcap Plectranthus	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Psilotum complanatum	Flat Fork Fern	Endangered	Category 3	Not Listed	
Plantae	Flora	Randia moorei	Spiny Gardenia	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Rhodamnia rubescens	Scrub Turpentine	Critically Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Rhodomyrtus psidioides	Native Guava	Critically Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Rhynchosia acuminatissima	Pointed Trefoil	Vulnerable	Not Sensitive	Not Listed	
Plantae	Flora	Sarcochilus fitzgeraldii	Ravine Orchid	Vulnerable	Category 2	Vulnerable	
Plantae	Flora	Sarcochilus hartmannii	Hartman's Sarcochilus	Vulnerable	Category 2	Vulnerable	
Plantae	Flora	Senna acclinis	Rainforest Cassia	Endangered	Not Sensitive	Not Listed	
Plantae	Flora	Symplocos baeuerlenii	Small-leaved Hazelwood	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Syzygium hodgkinsoniae	Red Lilly Pilly	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Syzygium moorei	Durobby	Vulnerable	Not Sensitive	Vulnerable	
Plantae	Flora	Syzygium paniculatum	Magenta Lilly Pilly	Endangered	Not Sensitive	Vulnerable	
Plantae	Flora	Tinospora tinosporoides	Arrow-head Vine	Vulnerable	Not Sensitive	Not Listed	

Kingdom	Class	Scientific	Common	NSW Conservation Status	NSW Sensitivity Class	Federal Conservation Status	Migratory Species Agreements
Plantae	Flora	Tylophora woollsii	Cryptic Forest Twiner	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Uromyrtus australis	Peach Myrtle	Endangered	Not Sensitive	Endangered	
Plantae	Flora	Xylosma terrae- reginae	Queensland Xylosma	Endangered	Not Sensitive	Not Listed	

Data does not include NSW category 1 sensitive species.

NSW BioNet: © State of NSW and Office of Environment and Heritage

Location Confidences

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

LC Code	Location Confidence
Premise Match	Georeferenced to the site location / premise or part of site
Area Match	Georeferenced to an approximate or general area
Road Match	Georeferenced to a road or rail corridor
Road Intersection	Georeferenced to a road intersection
Buffered Point	A point feature buffered to x metres
Adjacent Match	Land adjacent to a georeferenced feature
Network of Features	Georeferenced to a network of features
Suburb Match	Georeferenced to a suburb boundary
As Supplied	Spatial data supplied by provider

USE OF REPORT - APPLICABLE TERMS

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
 - (a) the Report is compiled from or using content (**Third Party Content**) which is comprised of:
 - content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
 - (ii) content which is derived from content described in paragraph (i);
 - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
 - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (**Property**) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
 - (d) Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
 - (e) Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
 - (f) Lotsearch has not undertaken any physical inspection of the property;
 - (g) neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
 - the Report does not include any information relating to the actual state or condition of the Property;
 - (i) the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
 - (j) the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
 - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
 - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the

Report or these Terms;

- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
 - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
 - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

Photo A Existing Dwelling looking south east

Photo B Western side of existing dwelling

Photo C Eastern side of Existing Dwelling

Photo D Dual Occupancy Dwelling looking west

Photo E Looking north from Dual Occupancy Dwelling across former cropped area

P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal ABN: 41 995 651 524

Southern Cross University

PO Box 157 Lismore NSW 2480

Environmental Analysis Laboratory

Sample Receipt Notification (SRN)

Project:	EAL/M2405
Customer:	Tim Fitzroy & Associates Pty Ltd
Contact:	Tim Fitzroy
Client Job ID:	55/2020
No. of Samples	18 x Soil
Date Received:	14 OCT 2021
Comments:	20% discount as per Graham

Biller: Tim Fitzroy & Associates Pty Ltd - Tim Fitzroy

Test Request

 Sample Text ID
 Client Sample ID

 M2405/001
 TFA1

 M2405/002
 TFA2

 M2405/003
 TFA3

CRICOS Provider: 01241G

Page 1 of 4

Sample Receipt Notification (SRN)

 Southern Cross University

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

for EAL/M2405

Page 2 of 4

			SS-PACK-005
			Contaminated Site Assessment 1a
M2405/004	TFA4		1
M2405/005	TFA5		1
M2405/006	TFA6		1
M2405/007	TFA7		1
M2405/008	TFA8		1
M2405/009	TFA9		1
M2405/010	TFA10		1
M2405/011	TFA11		1
M2405/012	TFA12		1
M2405/013	TFA13		1

CRICOS Provider: 01241G

Sample Receipt Notification (SRN)

Southern Cross University

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

for EAL/M2405

Page 3 of 4

		SS-PACK-005
		Contaminated Site Assessment 1a
M2405/014	TFA14	1
M2405/015	TFA15	1
M2405/016	TFA16	1
M2405/017	TFA9 Field Duplicate	1
M2405/018	TFA Lab Duplicate	1
Total		

CRICOS Provider: 01241G

Sample Receipt Notification (SRN)

Southern Cross University

PO Box 157 Lismore NSW 2480 P: +61 2 6620 3678 E: eal@scu.edu.au www.scu.edu.au/eal

ABN: 41 995 651 524

for EAL/M2405

Page 4 of 4

Test Descriptions

Test List Item Item Description

SS-PACK-005

Contaminated Site Assessment 1a Dry and Grind Basic Texture Metals (Cu, Pb, Cd, Zn, As, Se, Fe, Mn, Ag, Cr, Ni, Al, Hg, B, Co, Be) Pesticides (OPs, OCs) SUBCONTRACTED

ASPAC NATA

CRICOS Provider: 01241G

EAGLE Environmental Analysis Laboratory PO Box 157 (Military Road) LISMORE NSW 2480 T: 02 6620 3678 E: eal@scu.edu.au W: www.scu.edu.au	Submitting Client Details Quote Id: Job Ref: 55/2020 Company: Tim Fitzroy & Associates Contact: Tim Fitzroy Phone: Mobile: 044 848 3837 Email: tim@timfitzroy.com.au Postal address: 61 Pine Ave East Ballina	Billing Client Details X Tick if same as submitting details ABN: Company: Contact: Phone: Mobile: Email: Postal address:
Payment Method:	Relinquished: Received: PM	Date: 14/10

- Purchase Order
- Cheque
- □ Credit/Debit Card (EAL staff will phone for details)
- X Invoice (prior approval)

Preservation: Condition on receipt:

none - freezer bricks - free- acidified - filtered - other ambient coop - frozen - other

Comm	ients:	the characteristic production of the state of the					Total number			e Analy	и Силоносельтатрификански сладания Силоносельтатрификански сладания			interiorite de la construir de	0405335809
¥	1 lab duplicate, 1 fiel	d duplicate					of samples		Price list c	ode (e.	g. SW-P	ACK-06)		ounousenuternameenuternameenuter	Mindage Bandaria
	Email quote from Gr		¥	% reduction in	lab analysis cost	S	18	CK-005					o possi na na posi na		فللمسترجع والمراجع ومرجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع
Lab ID	Sample ID	Sample Depth	Sampling Date	Sampler	Your Client	Crop ID	Sample Type (e.g. water, leaf, soil)	SS-PA(والمسترور والمعرفية والمراجع والمستعمل والمعارجة والمحاصر والمحاصر والمحاصر والمحاصر والمحاصر والمحاص
1	TFA1	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	х							tunial
2	TFA2	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	х							
3	TFA3	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	х							
41	TFA4	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	х							

Comn	nents:						ndar.		index picture in the providence of the last of the las	*	lysis Re			decenses
								Р	rice List	Code (e.g. SW	-PACK-C	6)	
							~	(-005						
ikelil	hood and nature of Haz	ardous ma	terial:				a	SS-PACK-005						
Lab ID	Sample ID	Sample Depth		Sampler	Your client	Crop ID	Sample Type (e.g. water, leaf, soil)	SS						
5	TFA5	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	х						
G	TFA6	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	Х		<u> </u>				
7	TFA7	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	Х		1				
8	TFA8	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	Х		-		1		
7	TFA 9	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	Х						
0	TFA10	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	Х						
1	TFA11	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	Х		-	1			
2	TFA 12	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	Х						
3	TFA13	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	<u> </u>					antoired (cardinate instants are	
4	TFA14	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	Х				1		
5	TFA15	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	Х						
6	TFA16	and a second a second	14/10/2021	Tim Fitzroy	Wright		Soil	Х						
7	TFA9 Field Duplicate	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	Х		1				
3	TFA Lab Duplicate	0-150mm	14/10/2021	Tim Fitzroy	Wright		Soil	Х						
							nin fan fan fan fan fan fan fan fan fan fa					-		
								9488888658658658678669888888888						- university of the second
												-		are and the second s
				dehetrisensiskasendranyiksensisensiskyksansisensistyksansisensisensisensisensis							1			

				****								1		
				96.09145/c0-01010010101010-01-07040/02046-0202011-002044-0000-0244										

D Laboratory Analysis

RESULTS OF SOIL ANALYSIS

18 samples supplied by Tim Fitzroy & Associates Pty Ltd on 14/10/2021. Lab Job No. M2405.

Samples submitted by Tim Fitzroy. Your Job: 55/2020. 61 Pine Avenue EAST BALLINA NSW 2478

ANALYTE	METHOD	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Sample 9
	REFERENCE	TFA1	TFA2	TFA3	TFA4	TFA5	TFA6	TFA7	TFA8	TFA9
	Job No.	M2405/1	M2405/2	M2405/3	M2405/4	M2405/5	M2405/6	M2405/7	M2405/8	M2405/9
TEXTURE (SAND, CLAY, SILT)	** inhouse	Clay								
MOISTURE %	** C	Clay 29	Clay 22	Clay 26	Clay 28	Clay 25	Clay 27	Clay 32	Clay 31	Clay 18
MOISTORE %	C	29	22	20	28	25	27	32	31	18
SILVER (mg/kg DW)	а	<1	<1	<1	<1	<1	<1	<1	<1	<1
ARSENIC (mg/kg DW)	а	11	12	12	11	11	11	11	18	15
LEAD (mg/kg DW)	а	23	30	29	30	29	25	24	87	31
CADMIUM (mg/kg DW)	а	<0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
CHROMIUM (mg/kg DW)	а	9	9	10	9	9	7	9	9	8
COPPER (mg/kg DW)	а	22	20	23	27	25	25	26	38	36
MANGANESE (mg/kg DW)	а	979	2,282	1,995	2,460	2,369	1,309	1,263	2,643	3,662
NICKEL (mg/kg DW)	а	6	6	6	6	6	5	6	8	9
SELENIUM (mg/kg DW)	а	2	2	1	2	2	2	2	1	2
ZINC (mg/kg DW)	а	57	75	64	71	73	44	47	215	124
MERCURY (mg/kg DW)	а	0.10	0.10	0.11	0.13	0.11	0.08	0.06	0.12	0.10
IRON (% DW)	а	2.68	2.79	3.10	2.85	2.74	2.46	2.85	2.80	2.67
ALUMINIUM (% DW)	a	1.66	1.65	2.10	1.78	1.73	1.50	1.79	1.45	1.66
	G									
BERYLLIUM (mg/kg DW)	а	<1	<1	<1	<1	<1	<1	<1	<1	<1
BORON (mg/kg DW)	а	2	2	<1	1	2	<1	<1	1	2
COBALT (mg/kg DW)	а	10	23	21	24	20	12	10	19	27
PESTICIDE ANALYSIS SCREEN										
Hexachlorobenzene (HCB) (mg/kg)	с	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Heptachlor (mg/kg)	с	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Aldrin (mg/kg)	с	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
Heptachlor epoxide (mg/kg)	с	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1
o,p'-DDE (mg/kg)	с	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan (mg/kg)	с	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDE (mg/kg)	с	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin (mg/kg)	с	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin (mg/kg)	с	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD (mg/kg)	с	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT (mg/kg)	с	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan (mg/kg)	с	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2
p,p'-DDD (mg/kg)	с	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT (mg/kg)	с	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1
Endosulfan sulphate (mg/kg)	c	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde (mg/kg) Methowichlor (mg/kg)	c c	<0.1 <0.1								
Methoxychlor (mg/kg) Endrin Ketone (mg/kg)	c	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Organochlorine Pesticides SUM (mg/kg)	c	<1	<1	<1	<1	<1	<1	<1	<1	<1
		<0 F	-0 F	-0 F	-0 F	-0 F	<0.5	<0.5	-0 F	<0.5
Dichlorvos (mg/kg)	c c	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5	<0.5 <0.5	< 0.5
Dimethoate (mg/kg) Diazinon (Dimpylate) (mg/kg)	c	<0.5 <0.5	<0.5	<0.5	< 0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5
Chlorpyrifos (Chlorpyrifos Ethyl) (mg/kg)	c	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methidathion (mg/kg)	c	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Ethion (mg/kg)	c	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Organophosphate Pesticides SUM (mg/kg)	c	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
	Ĭ					/				

METHODS REFERENCE:

a. ¹³Nitric/HCI digest - APHA 3125 ICPMS

b. ¹³Nitric/HCI digest - APHA 3120 ICPOES

c. Analysis sub-contracted - SGS report no. SE224722 ** denotes these test procedure or calculation are as yet not NATA accredited but quality control data is available

NOTES:

1. HILA Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake (no poultry), also includes childcare centres, preschools and primary schools.

2. HILB Residential with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

AIIL C Public open space such as parks, playing nuclear playing fields (e.g. oval), secondary schools and footpaths. This does not include undeveloped public open space.
 AIIL C Public open space such as parks, playing fields (e.g. oval), secondary schools and footpaths. This does not include undeveloped public open space.
 (REFERENCE: Health Investigation Guidelines from NEPM (National Environmental Protection, Assessment of Site Contamination, Measure), 2013; Schedule B1).
 5. Environmental Soil Quality Guidelines, Page 40, ANZECC, 1992.

6. able 1 Maximum values of specific contaminant concentrations for classification without TCLP (NSW EPA 2014, Waste Classification Guidelines Part 1: Classifying Waste) 7. able 2 Maximum values for leachable concentrations and specific contaminant concentrations when used together (NSW EPA 2014, Waste Classification Guidelines Part 1: Classifying Waste)

8. Analysis conducted between sample arrival date and reporting date. 9. ** NATA accreditation does not cover the performance of this service

10... Denotes not requested.

11. This report is not to be reproduced except in full.

12. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer SCU.edu.au/eal/t&cs or on request).

13. Results relate only to the samples tested.

14. This report was issued on 27/10/2021

Additional NOTES:

DW = Dry Weight. na = no guidelines available

TFA10 TFA11 TFA12 TFA13 TFA14 TFA15 TFA16 TFA9 Field Duplicate TFA1ab Duplicate M2405/10 M2405/11 M2405/12 M2405/13 M2405/14 M2405/15 M2405/16 M2405/17 M2405/17 Clay	Individual -Column A See note 1a
Clay Clay <th< th=""><th> 100 300 20</th></th<>	 100 300 20
26 25 28 22 16 19 24 22 25 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 </th <th>100 300 20</th>	100 300 20
26 25 28 22 16 19 24 22 25 <1	100 300 20
<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<	100 300 20
15 11 13 17 12 26 17 13 5	100 300 20
15 11 13 17 12 26 17 13 5	100 300 20
	300 20
<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	(<100)
9 9 11 7 7 7 8 7 10	
36 35 32 45 31 18 38 32 8	6,000
2,446 1,187 903 2,126 2,865 1,019 2,849 2,987 240	3,800
7 6 7 9 11 6 10 8 5	400
	200
138 180 66 142 93 52 230 114 29	7,400
0.12 0.08 0.10 0.09 0.09 0.09 0.09 0.09 0.09	40
	40
2.66 2.08 3.15 2.47 2.55 2.29 2.99 2.33 1.49	па
1.66 1.41 1.94 1.63 1.71 1.60 1.54 1.60 1.39	па
्य य य य य य य य य	60
2 5 <1 4 3 2 1 3 <1	4,500
19 10 9 17 19 7 20 20 3	100
<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	10
<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	6
<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	6
<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <th< td=""><td>6 240</td></th<>	6 240
<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <th< td=""><td></td></th<>	
<pre><0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2</pre>	 240
(0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1	240 6
<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <th< td=""><td>10</td></th<>	10
<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <th< td=""><td>240</td></th<>	240
<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	240
(0.1	
<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <th< td=""><td> 240</td></th<>	 240
<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	240
<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	240
<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	10
<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	300
<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	10
<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	
<pre><0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5</pre>	
<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	
<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <th< td=""><td> 160</td></th<>	 160
\[\begin{aligned} &	100
\[\begin{aligned} &	
<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <th< td=""><td></td></th<>	

E Data Usability Assessment and Quality Assurance

Data Usability Summary Assessment

All site work was completed in accordance with standard *TFA sampling protocols*, including a quality assurance/quality control (QA/QC) programme and standard operating procedures.

A data usability assessment was performed for the soil data collected by TFA, as summarised in the following tables:

- Table E.1, field QC samples summary,
- Table E.2, summary of field QA/QC, and
- Table E.3, summary of laboratory QA/QC.

Table I.1: Field quality control samples summary

	Total samples	Field duplicates	Lab duplicates	Trip Spike	Trip blank
Soil					
Heavy metals ¹	16	1	1	0	0
OCs	16	1	1	0	0
OPs	16	1	1	0	0

Notes:

- 1. Arsenic, lead, cadmium, chromium, copper, nickel, zinc, mercury, beryllium, boron, cobalt.
- 2. Silver, aluminium, arsenic, cadmium, chromium, copper, iron, manganese, nickel, lead, selenium, zinc, mercury.

Precision Image: Construct of the system of the syste	Parameter	Complies	Comments ¹
(SOPs) appropriate and complied with Yes TFA operating procedures. Field duplicates Yes ≥ 5%. RPD² criteria < 30% - 50%.	Precision		
(SOPs) appropriate and complied with Yes TFA operating procedures. Field duplicates Yes ≥ 5%. RPD² criteria < 30% - 50%.	Standard operating procedures		All sampling was conducted under standard
Field duplicates Yes ≥ 5%. RPD² criteria < 30% – 50%. Inter-laboratory duplicates Yes ≥ 5%. RPD² criteria < 30% – 50%.		Yes	
Inter-laboratory duplicates Yes ≥ 5%. RPD² criteria < 30% – 50%. Accuracy Matrix spikes samples appropriate Yes ≥ 1/media type. Representativeness Sample collection - preservation All samples were collected directly into laboratory supplied jars with no headspace. Al samples were placed immediately into eskies containing ice. Sample collection - sample splitting Yes Duplicate samples were split in the field by filli each jar collectively (i.e. co-collected). These samples were not submitted for analysi however. Field equipment calibrated N/A No field equipment that required calibration was used. Decontamination procedures Yes Soil samples were collected using a shovel an gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks ≥ 1/field batch (volatiles), < LORs.	complied with		
Accuracy Yes ≥ 1/media type. Representativeness All samples were collected directly into laboratory supplied jars with no headspace. Al samples were placed immediately into eskies containing ice. Sample collection - sample splitting Yes Duplicate samples were split in the field by filli each jar collectively (i.e. co-collected). These samples were not submitted for analysi however. Field equipment calibrated N/A No field equipment that required calibration wa used. Decontamination procedures Yes Soil samples were collected using a shovel an gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks No ≥ 1/field batch (volatiles), < LORs.	Field duplicates	Yes	≥ 5%. RPD ² criteria < 30% – 50%.
Matrix spikes samples appropriate Yes ≥ 1/media type. Representativeness All samples were collected directly into laboratory supplied jars with no headspace. Al samples were placed immediately into eskies containing ice. Sample collection - sample splitting Yes Duplicate samples were split in the field by filli each jar collectively (i.e. co-collected). These samples were not submitted for analysi however. Field equipment calibrated N/A No field equipment that required calibration wa used. Decontamination procedures Yes Soil samples were collected using a shovel an gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks No ≥ 1/field batch (volatiles), < LORs.	Inter-laboratory duplicates	Yes	≥ 5%. RPD ² criteria < 30% – 50%.
Representativeness All samples were collected directly into laboratory supplied jars with no headspace. Al samples were placed immediately into eskies containing ice. Sample collection - sample splitting Yes Yes Duplicate samples were split in the field by filli each jar collectively (i.e. co-collected). These samples were not submitted for analysi however. Field equipment calibrated N/A No No field equipment that required calibration was used. Decontamination procedures Yes Soil samples were collected using a shovel an gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No No rinsate samples were potential contaminants of concern.	Accuracy		
Sample collection - preservation Yes All samples were collected directly into laboratory supplied jars with no headspace. Al samples were placed immediately into eskies containing ice. Sample collection - sample splitting Yes Duplicate samples were split in the field by filli each jar collectively (i.e. co-collected). These samples were not submitted for analysi however. Field equipment calibrated N/A No field equipment that required calibration was used. Decontamination procedures Yes Soil samples were collected using a shovel an gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks No ≥ 1/field batch (volatiles), < LORs.	Matrix spikes samples appropriate	Yes	≥ 1/media type.
Yes laboratory supplied jars with no headspace. Al samples were placed immediately into eskies containing ice. Sample collection - sample splitting Yes Duplicate samples were split in the field by filli each jar collectively (i.e. co-collected). These samples were not submitted for analysi however. Field equipment calibrated N/A No field equipment that required calibration was used. Decontamination procedures Yes Soil samples were collected using a shovel an gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks No ≥ 1/field batch (volatiles), < LORs.			
Yes samples were placed immediately into eskies containing ice. Sample collection - sample splitting Yes Duplicate samples were split in the field by filli each jar collectively (i.e. co-collected). These samples were not submitted for analysi however. Field equipment calibrated N/A No field equipment that required calibration was used. Decontamination procedures Yes Soil samples were collected using a shovel an gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks No ≥ 1/field batch (volatiles), < LORs.	Sample collection - preservation		
Samples were placed immediately into eskies containing ice. Sample collection - sample splitting Yes Duplicate samples were split in the field by filli each jar collectively (i.e. co-collected). These samples were not submitted for analysi however. Field equipment calibrated N/A No field equipment that required calibration was used. Decontamination procedures Yes Soil samples were collected using a shovel an gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks No ≥ 1/field batch (volatiles), < LORs.		Vec	
Sample collection - sample splitting Yes Duplicate samples were split in the field by filli each jar collectively (i.e. co-collected). These samples were not submitted for analysi however. Field equipment calibrated N/A No field equipment that required calibration was used. Decontamination procedures Yes Soil samples were collected using a shovel an gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks No ≥ 1/field batch (volatiles), < LORs.		103	
Yes each jar collectively (i.e. co-collected). These samples were not submitted for analysi however. Field equipment calibrated N/A No field equipment that required calibration was used. Decontamination procedures Yes Soil samples were collected using a shovel an gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks No ≥ 1/field batch (volatiles), < LORs.			
Yes These samples were not submitted for analysi however. Field equipment calibrated N/A No field equipment that required calibration was used. Decontamination procedures Yes Soil samples were collected using a shovel an gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks No ≥ 1/field batch (volatiles), < LORs.	Sample collection - sample splitting		
Field equipment calibrated N/A No field equipment that required calibration was used. Decontamination procedures Yes Soil samples were collected using a shovel and gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks ≥ 1/field batch (volatiles), < LORs.		Yes	
Field equipment calibrated N/A No field equipment that required calibration was used. Decontamination procedures Yes Soil samples were collected using a shovel an gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks ≥ 1/field batch (volatiles), < LORs.			
IN/A used. Decontamination procedures Yes Soil samples were collected using a shovel an gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks ≥ 1/field batch (volatiles), < LORs.			
Decontamination procedures Yes Soil samples were collected using a shovel an gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks ≥ 1/field batch (volatiles), < LORs.	Field equipment calibrated	N/A	
Yes gloved hand, which was washed with Decon 9 between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks ≥ 1/field batch (volatiles), < LORs.			
Between locations. Rinsate samples N/A No rinsate samples were collected. Trip blanks ≥ 1/field batch (volatiles), < LORs.	Decontamination procedures		
Rinsate samples N/A No rinsate samples were collected. Trip blanks ≥ 1/field batch (volatiles), < LORs.		res	
Trip blanks ≥ 1/field batch (volatiles), < LORs.	Dinasta semulas	N1/A	
No volatile compounds were potential contaminants of concern.		IN/A	
No volatile compounds were potential contaminants of concern.	Thp blanks		2 I/field batch (volatiles), < LORS.
contaminants of concern.		No	No volatilo compounds woro potential
	Trip spikes		\geq 1/field batch (volatiles), 70 - 130%,
(recovery) or $\leq 30 - 50\%$ (RPDs).			
No		No	
No volatile compounds were potential		140	No volatile compounds were potential
contaminants of concern.			
Comparability	Comparability	1	
		Yes	field work was conducted by Tim Fitzroy of TFA
Consistent weather/field conditions			No extreme weather conditions occurred during
Yes or before/after the investigation.		Yes	
Completeness	Completeness		
Sample logs and field data Yes -		Yes	-
Chain of Custody Yes Refer to Appendix F			Refer to Appendix F

Table I.2: Summary of field QA/QC

Notes:

- For QC samples, specified frequency and acceptance criteria shown.
 RPD = relative percentage difference.

Table I.3: Summary of laboratory QA/QC

Parameter	Complies	Comments ¹					
Precision							
Laboratory duplicates		≥ 10%, laboratory specified.					
	Yes	All laboratory duplicates were within the laboratory specified global acceptance criteria.					
Accuracy							
Surrogate spikes	Yes	Organics by GC, 70% - 130%.					

Parameter	Complies	Comments ¹
		All surrogates were within the laboratory specified global acceptance criteria.
Matrix spikes analysis appropriate	Yes	≥ 70% - 130%.
Laboratory control samples (LCSs)	Yes	≥ 1/lab batch, 70% - 130%.
Certified reference material (CRM)	N/A	-
Representativeness		
Sample condition	Yes	
Holding times	Yes	
Laboratory blanks	Yes	≥ 1/lab batch, < LORs.
Comparability		
NATA accredited laboratory	Yes	EAL Laboratory Services is a NATA accredited laboratory (accreditation number 14960).
NEPM methods or similar	Yes	LORs were consistent and appropriate.
Completeness		
Sample receipt	Yes	
Laboratory reports	Yes	

Notes:

 For QC samples, acceptance criteria shown. Acceptance criteria can vary based on analyte, statistical data and laboratory specific methods. Laboratory specified relates to detected concentrations based on LORs, e.g. result < 10 x LOR = no limit, 10 – 20 x LOR = 0 - 50%, > 20 x LOR = 0 - 20%. See laboratory reports for specific details.

Summary and Discussion

The following issues were identified with the data:

- Precision: The data shows no significant variability.
- Accuracy: The accuracy of the analysis is confirmed by surrogate, matrix spike and LCS recoveries within the acceptance criteria.
- Representativeness: No outliers have been reported for QC samples collected to assist in the qualification of representativeness. It should be noted that no trip spikes or blanks were analysed during the works, but no volatile compounds were PCOCs.
- Comparability: The data is considered to be acceptable, with consistent sampling staff and NATA accredited laboratory used and all LORs below the relevant criteria.
- Completeness: Laboratory and field documentation is considered to be complete.

Data Usability Background

I 1.0 Introduction

Information generated from environmental investigations requires some statement in regard to the usability of the data, and therefore quality assurance (QA) and quality control (QC) are an integral part of the analysis and interpretation of environmental data. QA/QC used in contaminated sites investigations is briefly reviewed in this section.

Quality assurance involves all of the actions, procedures, checks and decisions undertaken to ensure the representativeness and integrity of samples, and accuracy and reliability of analytical results (NEPC 1999). Quality control is the component of QA which monitors and measures the effectiveness of other procedures by the comparison of these measures to previously decided objectives.

There are various components of QA/QC which address the operation of the laboratories and the routine procedures conducted to achieve a minimum level of quality. Examples of QA components include sample control, data transfer, instrument calibration, staff training, etc. Examples of QC components include the measurement of samples to access the quality of reagents and standards, cleanliness of apparatus, accuracy and precision of methods and instruments, etc. Generally, the management of laboratory QA issues is addressed through accreditation by the National Association of Testing Authorities (NATA), or similar, and monitoring of these issues is not addressed on a project by project basis.

On a project specific basis, those involved in collecting, assessing or reviewing the relevant data should ensure the minimum level of QA is conducted. Appropriate numbers and types of QC samples should be collected and analysed, both field QC samples and laboratory QC samples. While minimum levels of QA/QC are specified in some guidelines, e.g. NSW EPA 1994, AS 4482.1-1997, NEPC 1999, the minimum level required may vary between projects, based on site and project specific aspects. This means that the minimum specified requirements may not be sufficient for a particular project. As described in the NEPM (NEPC 1999):

As a general rule, the level of required QC is that which adequately measures the effects of all possible influences upon sample integrity, accuracy and precision, and is capable of predicting their variation with a high degree of confidence.

I 2.0 PARCC Parameters

Following receipt of laboratory analytical results, data validation is conducted to determine if the specified acceptance criteria have been met. This is conducted to ensure that all data, and subsequent decisions based on that data, are technically sound. Data quality is typically discussed in terms of precision, accuracy, representativeness, comparability and completeness. These are referred to as the PARCC parameters2. Field QA/QC and laboratory QC is described below within the PARCC framework.

I 2.1 Precision

I 2.1.1 Duplicates

Precision is a measure of the reproducibility of results under a given set of conditions and is assessed on the basis of agreement between a set of duplicate results obtained from duplicate analyses. The precision of a duplicate determination is measured by comparing the difference between the two samples to the average of the two samples, expressed as a relative percentage difference (RPD).

The determination is:

P = Primary sample

D = Duplicate sample

Three types of duplicates are commonly used:

- Field duplicates are used to measure the precision of the sampling and analytical process
- Inter-laboratory duplicates are used to check on the analytical performance of the primary laboratory
- Laboratory duplicates are used to measure the precision of the analytical process.

I 2.1.2 Field Duplicates

Field duplicates (or blind replicates) are collected from the same location and submitted to the laboratory for analyses, as a primary sample. The sample nomenclature is such that the laboratory is not aware which sample is a duplicate. The RPD is calculated to determine the degree of repeatability (precision) of results obtained from the duplicate analysis. Where results are below the practical quantification limit (PQLs) or limits of reporting (LORs), i.e. non-detects, RPDs cannot be calculated. Where one result is detected, the results are considered to conform when the detected result is less than five times the PQL/LOR.

The PQL/LOR is the lowest concentration of an analyte that can be determined with acceptable precision (repeatability) and accuracy under the test conditions. The PQL/LOR is usually calculated as five times the lower limit of detection (or method detection limit). However, adjustments in PQLs/LORs may be required due to interference from high contaminant concentrations.

As environmental samples can exhibit a high degree of heterogeneity, field duplicates often exceed the acceptance criterion, particularly if the samples are co-collected, for example, because of the potential for losing volatiles during sample splitting. It is generally accepted that before results which fail the acceptance criterion are described as due to low concentrations or sample heterogeneity, the sample should be re-analysed. This may not be necessary when the analytical results are significantly less than the landuse criteria.

2.1.3 Inter-laboratory Duplicates

Inter-laboratory duplicates (or split samples) are field duplicates which are sent to second laboratory and analysed for the same analytes and, as far as possible, by the same methods. These provide a check on the analytical performance of the primary laboratory.

2.1.4 Laboratory Duplicates

Laboratory duplicates (or check samples) are field samples which are split by the laboratory and thereafter treated as separate samples. The RPD is calculated to determine the degree of repeatability (precision) of results obtained from the duplicate analysis.

USEPA (1994) specifies that for inorganics, if the results for laboratory duplicates fall outside of the recommended control limits for a particular analyte, all results for that analyte, in all associated samples of the same matrix, should be qualified as an estimated quantity. For organics, USEPA (1999) does not specify recommended actions for laboratory duplicates.

2.2 Accuracy

Accuracy is a measure of the agreement between an experimental determination and the true value of the parameter being measured. Inasmuch as the true sample concentrations are not known, the determination of accuracy is achieved through the analysis of known reference materials or assessed by the analysis of matrix spikes. Spiking of reference material into the actual sample matrix is the preferred technique because it provides a measure of the matrix effects on the analytical recovery.

Accuracy is measured in terms of percentage recovery as defined by:

%R = ((SSR – SR) / SA) x 100

%R = percentage recovery spike SSR = spiked sample result SR = sample result SA = spike added

2.2.1 Matrix Spikes/Matrix Spike Duplicates

These are samples prepared in the laboratory by dividing a sample into two aliquots and then spiking each with identical concentrations of specific analytes. The matrix spike (MS) and matrix spike duplicate (MSD) are then analysed separately and the results compared to determine the accuracy and precision of the analytes.

2.2.2 Surrogate Spike

Surrogate spikes provide an indication of analytical accuracy. They are used only for analyses which use gas chromatography and are compounds which are similar to the organic analytes of interest in chemical composition, extraction and chromatography, but which are not normally found in field samples. Surrogates are generally spiked into all sample aliquots prior to preparation and analysis. If the surrogate spike recovery does not meet the prescribed acceptance criteria, the samples should be re-analysed.

2.2.3 Laboratory Control Samples

Laboratory control samples (quality control check samples) are laboratory prepared samples of an appropriate clean matrix (i.e. sand or distilled water) which are spiked with known concentrations of specific analytes. The laboratory control sample (LCS) is then analysed and the results are used to assess sample preparation and analytical accuracy, free of matrix effects. Certified reference material (CRM) is another form of LCS, and involves the analysis of a known standard as part of the laboratory batch, e.g. British Columbia sediment samples for analysis of metals.

2.3 Representativeness

2.3.1 Rinsate blanks

Used to determine if sampling equipment has been adequately decontaminated to ensure that cross-contamination between samples has not occurred. The frequency for rinsate blanks is one per piece of equipment per day (AS 4482.1-1997), however it should be noted that cross-contamination will bias samples upwards, and the frequency should therefore be at the investigators discretion.

2.3.2 Trip Blanks

Used only when volatile organics are sampled to determine if transport in motor vehicles or similar has resulted in contamination of the samples. For trip blanks, a sufficient number should be analysed to allow the representativeness of the sampling to be determined. However, it should be noted that cross-contamination will bias samples upwards, and the frequency should therefore be at the investigators discretion.

2.3.3 Trip Spikes

Used only when volatile organics are sampled to attempt to quantify loss of volatiles during the analytical process. For trip spikes, a sufficient number of samples should be analysed to allow qualification of the likely loss of volatiles during the field sampling.

2.3.4 Laboratory Blanks

Laboratory blanks (or method blanks, or analysis blanks) are used to verify that contaminants are not introduced into the samples during sample preparation and analysis. The NEPM (NEPC 1999) specifies that laboratory blanks should be conducted at a frequency of "at least one per process batch". The acceptance criterion for laboratory blanks is non-detect at the PQL/LOR.

2.4 Comparability

Comparability is a qualitative parameter designed to express the confidence with which one data set may be compared with another, including established criteria. Comparability is maintained by using consistent methods and ensuring that PQLs/LORs are below the relevant criteria.

2.5 Completeness

Quality control sample completeness is defined as the number of QC samples which should have been analysed, compared to the actual number analysed. If the appropriate number of QC samples are not analysed with each matrix or sample batch, then the data reviewer should use professional judgement to determine if the associated sample data should be qualified. Completeness also refers to the complete and correct inclusion of field/sample documentation and laboratory documentation.

2.5.1 QC Sample Frequency and Criteria

Based on EPA made or approved guidelines, the following QC samples are required for all contaminated site investigations, unless otherwise specified as part of the data quality objectives (DQOs) process review. All data to be used for validation should conform as a minimum to the requirements specified, regardless of minimum sample size.

Quality Control Sample	Frequency	Results ¹
Precision		·
Field duplicates	≥ 5%	≤ 30 - 50% ²
Inter-laboratory duplicates	≥ 5%	≤ 30 - 50% ²
Laboratory duplicates	≥ 10%	Lab specified ³
Accuracy		
Surrogate spikes	Organics by GC	70 – 130% ⁴
Matrix spikes (MSs)	≥ 1/media type	70 - 130% ⁵
Laboratory control samples		
(LCSs)	≥ 1/lab batch	70 - 130% ⁶
Certified refence material (CRM)	LCS for metals	Lab specified ⁷
Representativeness		
Rinsate samples	≥ 1/field batch	< LOR
Trip blanks	≥ 1/field batch (volatiles)	< LOR
Trip spikes	≥ 1/field batch (volatiles)	70 - 130%, ≤ 30 - 50% ⁸
Laboratory blanks	≥ 1/lab batch	< LOR

Notes

- 1. Where results are laboratory specified, the laboratory analytical reports should be consulted for specific information.
- 2. Relative percentage differences (RPDs) for field duplicates from AS 4482.1 (1997).
- RPDs for laboratory duplicates specified by the laboratory. Based on the magnitude of the results compared to the level of reporting (LOR), e.g. ALS: result < 10 x LOR = no limit, 10 20 x LOR = 0-50%, > 20 x LOR = 0-20%. LabMark: < 5 x LOR = 0-100%, 5 10 x LOR = 0-75%, > 10 x LOR = 0-50% or 0-30% for metals.
- 4. Surrogate recoveries specified by laboratory based on global acceptance criteria or dynamic recovery limits based on statistical evaluation of actual laboratory data.
- 5. MS recoveries specified by laboratory based on global acceptance criteria.
- 6. LCS recoveries specified by laboratory based on global acceptance criteria or dynamic recovery limits based on statistical evaluation of actual laboratory data.
- 7. CRM recoveries specified by laboratory based on global acceptance criteria.
- 8. Trip spike results are specified as either recoveries or RPDs.

3.0 References

Australian New Zealand Environment and Conservation Council (1996) Guidelines for the laboratory analysis of contaminated soils. ANZECC, Canberra, ACT.

Australian Standard AS 4482.1 (2005) Guide to the sampling and investigation of potentially contaminated soil, Part 1: Non-volatile and Semi-volatile compounds. Standards Australia, Homebush, NSW.

National Environment Protection Council (NEPC) (1999) National Environmental

Protection (Assessment of Site Contamination) Measure, Schedule B(2) Guideline on Data

Collection, Sample Design and Reporting. National Environment Protection Council Service Corporation. Adelaide, SA.

National Environment Protection Council (NEPC) (1999) National Environmental Protection (Assessment of Site Contamination) Measure, Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soil. National Environment Protection Council Service Corporation. Adelaide, SA.

NSW Environment Protection Authority (1994) Contaminated Sites: Guidelines for Assessing Service Station Sites. NSW EPA, Chatswood, NSW.

NSW Environment Protection Authority (1997) Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites. NSW EPA, Chatswood, NSW.

United States Environmental Protection Agency, Contract Laboratory Program (1994) National Functional Guidelines for Inorganic Data Review. USEPA, Washington, DC.

United States Environment Protection Agency, Contract Laboratory Program (1999) National Functional Guidelines for Organic Data Review. USEPA, Washington, DC.

QA/QC Report for EAL Job M2405

18 samples supplied by Tim Fitzroy & Associates Pty Ltd on 14/10/2021. Lab Job No. M2405.

Samples submitted by Tim Fitzroy. Your Job: 55/2020.

61 Pine Avenue EAST BALLINA NSW 2478

Digest Date: 18/10/2021

Analysis Date: 18/10/2021

	PQL	Digest		LCS % R	ecovery			DUPLIC	ATE	
		Blank		AGA	L 12					
Method	mg/kg	mg/kg	Result 1	Certified Value	Recovery (%)	Pass Limits	Result 1 - M2405/10	Result 2 - M2405/10d	RPD	Pass Limits
							-	•		
3 Nitric/HCl digest - APHA 3125 ICPMS	1	<1	5.73	5.63	101.7%	Pass	0.00	0.00		Pass
3 Nitric/HCl digest - APHA 3125 ICPMS		<2	3.87	3.39	114.2%	Pass	14.2	16.0	12%	Pass
3 Nitric/HCl digest - APHA 3125 ICPMS 3 Nitric/HCl digest - APHA 3125 ICPMS	1 0.5	<1 <0.5	29.8 0.75	31.4 0.77	95.0% 97.1%	Pass	34.8	40.3	15% 58%	Pass
3 Nitric/HCl digest - APHA 3125 ICPMS	2	<2	32.9	33	99.7%	Pass	8.0	9.7	20%	Pass
3 Nitric/HCl digest - APHA 3125 ICPMS	1	<1	156	150	103.7%	Pass	33.6	38.6	14%	Pass
3 Nitric/HCl digest - APHA 3125 ICPMS	1	<1	503	500	100.7%	Pass	2782	2089	28%	Pass
3 Nitric/HCl digest - APHA 3125 ICPMS	1	<1	16.2	16.6	97.6%	Pass	8.0	6.2	25%	Pass
3 Nitric/HCl digest - APHA 3125 ICPMS	2	<2	1.53	1.50	102.2%	Pass	1.5	1.4	9%	Pass
3 Nitric/HCl digest - APHA 3125 ICPMS	1	<1	177	182	97.4%	Pass	125	151	19%	Pass
3 Nitric/HCl digest - APHA 3125 ICPMS	0.1	<0.1	0.56	0.53	104.8%	Pass	0.11	0.12	4%	Pass
3 Nitric/HCl digest - APHA 3125 ICPMS	0.005	<0.005	2.41	2.49	96.6%	Pass	2.58	2.73	6%	Pass
3 Nitric/HCl digest - APHA 3125 ICPMS	0.005	<0.005	1.07	1.05	101.8%	Pass	1.56	1.75	12%	Pass
3 Nitric/HCl digest - APHA 3125 ICPMS	1	<1	0.68	0.67	102.2%	Pass	0.69	0.74	7%	Pass
3 Nitric/HCl digest - APHA 3125 ICPMS	5	<5	2.55	3.46	73.8%	Pass	1.44	1.61	12%	Pass
3 Nitric/HCl digest - APHA 3125 ICPMS	1	<1	8.59	8.67	99.1%	Pass	22.2	16.4	30%	Pass
3 Nitric, 3 Nitric, 3 Nitric, 3 Nitric, 3 Nitric, 3 Nitric, 3 Nitric, 3 Nitric,	HCI digest - APHA 3125 ICPMS (HCI digest - APHA 3125 ICPMS	/HCI digest - APHA 3125 ICPMS 1 /HCI digest - APHA 3125 ICPMS 2 /HCI digest - APHA 3125 ICPMS 1 /HCI digest - APHA 3125 ICPMS 0.1 /HCI digest - APHA 3125 ICPMS 0.005 /HCI digest - APHA 3125 ICPMS 0.005 /HCI digest - APHA 3125 ICPMS 0.005 /HCI digest - APHA 3125 ICPMS 5	/HCI digest - APHA 3125 ICPMS 1 <1	/HCI digest - APHA 3125 ICPMS 1 <1	HCI digest - APHA 3125 ICPMS 1 <1	HCI digest - APHA 3125 ICPMS 1 <1	HCI digest - APHA 3125 ICPMS 1 <1	HCI digest - APHA 3125 ICPMS 1 <1	HCI digest - APHA 3125 ICPMS 1 <1 16.2 16.6 97.6% Pass 8.0 6.2 HCI digest - APHA 3125 ICPMS 2 <2	HCI digest - APHA 3125 ICPMS 1 <1 16.2 16.6 97.6% Pass 8.0 6.2 25% /HCI digest - APHA 3125 ICPMS 2 <2

Quality Control Global Acceptance Criteria (GAC)

Accuracy

LCS - 1 per analytical batch LCS - general analytes 70% - 130% recovery

Precision

Laboratory duplicate - 1 every 10 samples, minimum one per analytical batch Laboratory duplicate RPD GAC - 30%, also applicable - No Limit (<10x PQL), 0-50% (10-20x PQL), 0-20% (>20x PQL)

Notes:

This QA/QC report is specific to job number specified above

LCS: Laboratory Control Standard - Reported as percent recovery

RPD: Relative Percent Difference between two duplicate pieces of analysis

 $\ensuremath{\textbf{PQL:}}$ Practical Quantification Limit also referred to as Limit of Reporting LOR

.. - denotes no sufficient data available

This report was issued on 29/10/2021.

Department of Planning, Housing and Infrastructure

Gateway Determination

Planning proposal (Department Ref: PP-2021-5766): to permit a dual occupancy (detached) with development consent at Lot 5 DP 585928, 55 Settlement Road, Main Arm,

I, the Acting Director, Northern Region at the Department of Planning, Housing and Infrastructure, as delegate of the Minister for Planning and Public Spaces, have determined under section 3.34(2) of the *Environmental Planning and Assessment Act* 1979 (the Act) that an amendment to the Byron Local Environmental Plan 2014 to permit a dual occupancy (detached) with development consent at Lot 5 DP 585928, 55 Settlement Road, Main Arm should proceed subject to the following conditions:

The Council as planning proposal authority is authorised to exercise the functions of the local plan-making authority under section 3.36(2) of the Act subject to the following:

- (a) the planning proposal authority has satisfied all the conditions of the gateway determination;
- (b) the planning proposal is consistent with applicable directions of the Minister under section 9.1 of the Act or the Secretary has agreed that any inconsistencies are justified; and
- (c) there are no outstanding written objections from public authorities.

The LEP should be completed within 9 months of the Gateway determination.

Gateway Conditions

- Prior to agency and community consultation:
 - (a) the planning proposal must be updated to:
 - correct the reference to zone R2 on page 3;
 - include additional discussion of Aboriginal cultural heritage, including a recent AHIMS search;
 - reflect the required upgrades to the driveway access, internal driveway and Settlement Road outlined in the submitted Traffic Safety Assessment and Bushfire Assessment;
 - include additional information regarding flooding, such as a map that illustrates inundation of the site and further details regarding access (including the type of flood event that will affect the access as well as the duration that the road is inaccessible); and
 - address the outcomes and recommendations of the updated reports required by conditions 1(b) and 1(c).
 - (b) the following reports must be updated to include an assessment of both dwellings on the land:
 - Preliminary Site Contamination Report
 - On-Site Wastewater Management System Review
 - Traffic Safety Assessment
 - Land Use Conflict Risk Assessment

- Ecological Assessment
- Bush Fire Assessment Report
- (c) the Ecological Assessment must be amended to address the required upgrades to the driveway access, internal driveway and Settlement Road outlined in the submitted Traffic Safety Assessment and Bushfire Assessment.
- Public exhibition is required under section 3.34(2)(c) and clause 4 of Schedule 1 to the Act as follows:
 - (a) the planning proposal is categorised as standard as described in the Local Environmental Plan Making Guideline (Department of Planning, Housing and Infrastructure, August 2023) and must be made publicly available for a minimum of 20 working days; and
 - (b) the planning proposal authority must comply with the notice requirements for public exhibition of planning proposals and the specifications for material that must be made publicly available along with planning proposals as identified in *Local Environmental Plan Making Guideline* (Department of Planning, Housing and Infrastructure, August 2023).
- Consultation is required with the following public authorities and government agencies under section 3.34(2)(d) of the Act and/or to comply with the requirements of applicable directions of the Minister under section 9 of the Act:
 - NSW Rural Fire Service
 - NSW State Emergency Service
 - Tweed Byron Local Aboriginal Land Council
 - Arakwal Corporation

Each public authority is to be provided with a copy of the planning proposal and any relevant supporting material via the NSW Planning Portal, where possible, and given at least 30 working days to comment on the proposal.

 A public hearing is not required to be held into the matter by any person or body under section 3.34(2)(e) of the Act. This does not discharge Council from any obligation it may otherwise have to conduct a public hearing (for example, in response to a submission or if reclassifying land).

Dated 18 January 2024

Auguaro.

Lucy Walker A/Director, Northern Region Local and Regional Planning Department of Planning, Housing and Infrastructure

Delegate of the Minister for Planning and Public Spaces

PP-2021-5766 (IRF23/3162)